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Prof.Dr. Rüdiger Kiesel
Abteilung Finanzmathematik
Universität Ulm

email:kiesel@mathematik.uni-ulm.de



2

Short Description.

Times and Location: Lectures will be Monday 10-12; Tuesday 8-10 in He120.
First Lecture Tuesday, 14.10.2003

Content.
This course covers the fundamental principles and techniques of financial mathematics in discrete-
and continuous-time models. The focus will be on probabilistic techniques which will be discussed
in some detail. Specific topics are

• Classical Asset Pricing: Mean-Variance Analysis, CAPM, Arbitrage.

• Martingale-based stochastic market models: Fundamental Theorems of Asset Pricing.

• Contingent Claim Analysis: European, American and Exotic Options.

• Interest Rate Theory: Term Structure Models, Interest Rate Derivatives.

Pre-requisites. Probability Theory, Calculus, Linear Algebra

Literature.

• N.H.Bingham & R.Kiesel, Risk Neutral Valuation, Springer 1998.
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Chapter 1

Arbitrage Theory

1.1 Derivative Background

Definition 1.1.1. A derivative security, or contingent claim, is a financial contract whose value
at expiration date T (more briefly, expiry) is determined exactly by the price (or prices within a
prespecified time-interval) of the underlying financial assets (or instruments) at time T (within
the time interval [0, T ]).

This section provides the institutional background on derivative securities, the main groups
of underlying assets, the markets where derivative securities are traded and the financial agents
involved in these activities. As our focus is on (probabilistic) models and not institutional consid-
erations we refer the reader to the references for excellent sources describing institutions such as
Davis (1994), Edwards and Ma (1992) and Kolb (1991).

1.1.1 Derivative Instruments

Derivative securities can be grouped under three general headings: Options, Forwards and Futures
and Swaps. During this text we will mainly deal with options although our pricing techniques
may be readily applied to forwards, futures and swaps as well.

Options.

An option is a financial instrument giving one the right but not the obligation to make a specified
transaction at (or by) a specified date at a specified price. Call options give one the right to buy.
Put options give one the right to sell. European options give one the right to buy/sell on the
specified date, the expiry date, on which the option expires or matures. American options give
one the right to buy/sell at any time prior to or at expiry.

Over-the-counter (OTC) options were long ago negotiated by a broker between a buyer and a
seller. In 1973 (the year of the Black-Scholes formula, perhaps the central result of the subject),
the Chicago Board Options Exchange (CBOE) began trading in options on some stocks. Since
then, the growth of options has been explosive. Options are now traded on all the major world
exchanges, in enormous volumes. Risk magazine (12/97) estimated $35 trillion as the gross figure
for worldwide derivatives markets in 1996. By contrast, the Financial Times of 7 October 2002
(Special Report on Derivatives) gives the interest rate and currency derivatives volume as $ 83
trillion - an indication of the rate of growth in recent years! The simplest call and put options
are now so standard they are called vanilla options. Many kinds of options now exist, including
so-called exotic options. Types include: Asian options, which depend on the average price over
a period, lookback options, which depend on the maximum or minimum price over a period and
barrier options, which depend on some price level being attained or not.

Terminology. The asset to which the option refers is called the underlying asset or the un-
derlying. The price at which the transaction to buy/sell the underlying, on/by the expiry date
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CHAPTER 1. ARBITRAGE THEORY 6

(if exercised), is made, is called the exercise price or strike price. We shall usually use K for the
strike price, time t = 0 for the initial time (when the contract between the buyer and the seller of
the option is struck), time t = T for the expiry or final time.

Consider, say, a European call option, with strike price K; write S(t) for the value (or price)
of the underlying at time t. If S(t) > K, the option is in the money, if S(t) = K, the option is
said to be at the money and if S(t) < K, the option is out of the money.

The payoff from the option, which is

S(T )−K if S(T ) > K and 0 otherwise

(more briefly written as (S(T )−K)+). Taking into account the initial payment of an investor one
obtains the profit diagram below.

-
S(T )

K

6

profit

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

Figure 1.1: Profit diagram for a European call

Forwards

A forward contract is an agreement to buy or sell an asset S at a certain future date T for a certain
price K. The agent who agrees to buy the underlying asset is said to have a long position, the
other agent assumes a short position. The settlement date is called delivery date and the specified
price is referred to as delivery price. The forward price f(t, T ) is the delivery price which would
make the contract have zero value at time t. At the time the contract is set up, t = 0, the forward
price therefore equals the delivery price, hence f(0, T ) = K. The forward prices f(t, T ) need not
(and will not) necessarily be equal to the delivery price K during the life-time of the contract.

The payoff from a long position in a forward contract on one unit of an asset with price S(T )
at the maturity of the contract is

S(T )−K.

Compared with a call option with the same maturity and strike price K we see that the investor
now faces a downside risk, too. He has the obligation to buy the asset for price K.

Swaps

A swap is an agreement whereby two parties undertake to exchange, at known dates in the future,
various financial assets (or cash flows) according to a prearranged formula that depends on the
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value of one or more underlying assets. Examples are currency swaps (exchange currencies) and
interest-rate swaps (exchange of fixed for floating set of interest payments).

1.1.2 Underlying securities

Stocks.

The basis of modern economic life – or of the capitalist system - is the limited liability company (UK:
& Co. Ltd, now plc - public limited company), the corporation (US: Inc.), ‘die Aktiengesellschaft’
(Germany: AG). Such companies are owned by their shareholders; the shares

• provide partial ownership of the company, pro rata with investment,

• have value, reflecting both the value of the company’s (real) assets and the earning power
of the company’s dividends.

With publicly quoted companies, shares are quoted and traded on the Stock Exchange. Stock is
the generic term for assets held in the form of shares.

Interest Rates.

The value of some financial assets depends solely on the level of interest rates (or yields), e.g.
Treasury (T-) notes, T-bills, T-bonds, municipal and corporate bonds. These are fixed-income
securities by which national, state and local governments and large companies partially finance
their economic activity. Fixed-income securities require the payment of interest in the form of a
fixed amount of money at predetermined points in time, as well as repayment of the principal at
maturity of the security. Interest rates themselves are notional assets, which cannot be delivered.
Hedging exposure to interest rates is more complicated than hedging exposure to the price move-
ments of a certain stock. A whole term structure is necessary for a full description of the level of
interest rates, and for hedging purposes one must clarify the nature of the exposure carefully. We
will discuss the subject of modelling the term structure of interest rates in Chapter 8.

Currencies.

A currency is the denomination of the national units of payment (money) and as such is a financial
asset. The end of fixed exchange rates and the adoption of floating exchange rates resulted in a
sharp increase in exchange rate volatility. International trade, and economic activity involving it,
such as most manufacturing industry, involves dealing with more than one currency. A company
may wish to hedge adverse movements of foreign currencies and in doing so use derivative instru-
ments (see for example the exposure of the hedging problems British Steel faced as a result of the
sharp increase in the pound sterling in 96/97 Rennocks (1997)).

Indexes.

An index tracks the value of a (hypothetical) basket of stocks (FT-SE100, S&P-500, DAX), bonds
(REX), and so on. Again, these are not assets themselves. Derivative instruments on indexes
may be used for hedging if no derivative instruments on a particular asset (a stock, a bond, a
commodity) in question are available and if the correlation in movement between the index and
the asset is significant. Furthermore, institutional funds (such as pension funds, mutual funds
etc.), which manage large diversified stock portfolios, try to mimic particular stock indexes and
use derivatives on stock indexes as a portfolio management tool. On the other hand, a speculator
may wish to bet on a certain overall development in a market without exposing him/herself to a
particular asset.

A new kind of index was generated with the Index of Catastrophe Losses (CAT-Index) by the
Chicago Board of Trade (CBOT) lately. The growing number of huge natural disasters (such as
hurricane Andrew 1992, the Kobe earthquake 1995) has led the insurance industry to try to find
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new ways of increasing its capacity to carry risks. The CBOT tried to capitalise on this problem
by launching a market in insurance derivatives. Currently investors are offered options on the
CAT-Index, thereby taking in effect the position of traditional reinsurance.

Derivatives are themselves assets – they are traded, have value etc. - and so can be used as
underlying assets for new contingent claims: options on futures, options on baskets of options, etc.
These developments give rise to so-called exotic options, demanding a sophisticated mathematical
machinery to handle them.

1.1.3 Markets

Financial derivatives are basically traded in two ways: on organized exchanges and over-the-
counter (OTC). Organised exchanges are subject to regulatory rules, require a certain degree of
standardisation of the traded instruments (strike price, maturity dates, size of contract etc.) and
have a physical location at which trade takes place. Examples are the Chicago Board Options
Exchange (CBOE), which coincidentally opened in April 1973, the same year the seminal con-
tributions on option prices by Black and Scholes Black and Scholes (1973) and Merton Merton
(1973) were published, the London International Financial Futures Exchange (LIFFE) and the
Deutsche Terminbörse (DTB).

OTC trading takes place via computers and phones between various commercial and investment
banks (leading players include institutions such as Bankers Trust, Goldman Sachs – where Fischer
Black worked, Citibank, Chase Manhattan and Deutsche Bank).

Due to the growing sophistication of investors boosting demand for increasingly complicated,
made-to-measure products, the OTC market volume is currently (as of 1998) growing at a much
faster pace than trade on most exchanges.

1.1.4 Types of Traders

We can classify the traders of derivative securities in three different classes:

Hedgers.

Successful companies concentrate on economic activities in which they do best. They use the
market to insure themselves against adverse movements of prices, currencies, interest rates etc.
Hedging is an attempt to reduce exposure to risk a company already faces. Shorter Oxford English
Dictionary (OED): Hedge: ‘trans. To cover oneself against loss on (a bet etc.) by betting, etc.,
on the other side. Also fig. 1672.’

Speculators.

Speculators want to take a position in the market – they take the opposite position to hedgers.
Indeed, speculation is needed to make hedging possible, in that a hedger, wishing to lay off risk,
cannot do so unless someone is willing to take it on.

In speculation, available funds are invested opportunistically in the hope of making a profit: the
underlying itself is irrelevant to the investor (speculator), who is only interested in the potential
for possible profit that trade involving it may present. Hedging, by contrast, is typically engaged
in by companies who have to deal habitually in intrinsically risky assets such as foreign exchange
next year, commodities next year, etc. They may prefer to forgo the chance to make exceptional
windfall profits when future uncertainty works to their advantage by protecting themselves against
exceptional loss. This would serve to protect their economic base (trade in commodities, or
manufacture of products using these as raw materials), and also enable them to focus their effort
in their chosen area of trade or manufacture. For speculators, on the other hand, it is the market
(forex, commodities or whatever) itself which is their main forum of economic activity.
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Arbitrageurs.

Arbitrageurs try to lock in riskless profit by simultaneously entering into transactions in two
or more markets. The very existence of arbitrageurs means that there can only be very small
arbitrage opportunities in the prices quoted in most financial markets. The underlying concept of
this book is the absence of arbitrage opportunities (cf. §1.2).

1.1.5 Modelling Assumptions

Contingent Claim Pricing.

The fundamental problem in the mathematics of financial derivatives is that of pricing. The
modern theory began in 1973 with the seminal Black-Scholes theory of option pricing, Black and
Scholes (1973), and Merton’s extensions of this theory, Merton (1973).

To expose the relevant features, we start by discussing contingent claim pricing in the simplest
(idealised) case and impose the following set of assumptions on the financial markets (We will
relax these assumptions subsequently):

No market frictions No transaction costs, no bid/ask spread, no taxes,
no margin requirements, no restrictions on short sales

No default risk Implying same interest for borrowing and lending
Competitive markets Market participants act as price takers
Rational agents Market participants prefer more to less
No arbitrage

Table 1.1: General assumptions

All real markets involve frictions; this assumption is made purely for simplicity. We develop
the theory of an ideal – frictionless – market so as to focus on the irreducible essentials of the
theory and as a first-order approximation to reality. Understanding frictionless markets is also a
necessary step to understand markets with frictions.

The risk of failure of a company – bankruptcy – is inescapably present in its economic activity:
death is part of life, for companies as for individuals. Those risks also appear at the national level:
quite apart from war, or economic collapse resulting from war, recent decades have seen default of
interest payments of international debt, or the threat of it. We ignore default risk for simplicity
while developing understanding of the principal aspects (for recent overviews on the subject we
refer the reader to Jameson (1995), Madan (1998)).

We assume financial agents to be price takers, not price makers. This implies that even large
amounts of trading in a security by one agent does not influence the security’s price. Hence agents
can buy or sell as much of any security as they wish without changing the security’s price.

To assume that market participants prefer more to less is a very weak assumption on the
preferences of market participants. Apart from this we will develop a preference-free theory.

The relaxation of these assumptions is subject to ongoing research and we will include com-
ments on this in the text.

We want to mention the special character of the no-arbitrage assumption. If we developed a
theoretical price of a financial derivative under our assumptions and this price did not coincide
with the price observed, we would take this as an arbitrage opportunity in our model and go on to
explore the consequences. This might lead to a relaxation of one of the other assumptions and a
restart of the procedure again with no-arbitrage assumed. The no-arbitrage assumption thus has
a special status that the others do not. It is the basis for the arbitrage pricing technique that we
shall develop, and we discuss it in more detail below.
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1.2 Arbitrage

We now turn in detail to the concept of arbitrage, which lies at the centre of the relative pricing
theory. This approach works under very weak assumptions. We do not have to impose any
assumptions on the tastes (preferences) and beliefs of market participants. The economic agents
may be heterogeneous with respect to their preferences for consumption over time and with respect
to their expectations about future states of the world. All we assume is that they prefer more to
less, or more precisely, an increase in consumption without any costs will always be accepted.

The principle of arbitrage in its broadest sense is given by the following quotation from OED:
‘3 [Comm.]. The traffic in Bills of Exchange drawn on sundry places, and bought or sold in sight
of the daily quotations of rates in the several markets. Also, the similar traffic in Stocks. 1881.’

Used in this broad sense, the term covers financial activity of many kinds, including trade
in options, futures and foreign exchange. However, the term arbitrage is nowadays also used
in a narrower and more technical sense. Financial markets involve both riskless (bank account)
and risky (stocks, etc.) assets. To the investor, the only point of exposing oneself to risk is
the opportunity, or possibility, of realising a greater profit than the riskless procedure of putting
all one’s money in the bank (the mathematics of which – compound interest – does not require
a textbook treatment at this level). Generally speaking, the greater the risk, the greater the
return required to make investment an attractive enough prospect to attract funds. Thus, for
instance, a clearing bank lends to companies at higher rates than it pays to its account holders.
The companies’ trading activities involve risk; the bank tries to spread the risk over a range of
different loans, and makes its money on the difference between high/risky and low/riskless interest
rates.

The essence of the technical sense of arbitrage is that it should not be possible to guarantee a
profit without exposure to risk. Were it possible to do so, arbitrageurs (we use the French spelling,
as is customary) would do so, in unlimited quantity, using the market as a ‘money-pump’ to extract
arbitrarily large quantities of riskless profit. This would, for instance, make it impossible for the
market to be in equilibrium. We shall restrict ourselves to markets in equilibrium for simplicity –
so we must restrict ourselves to markets without arbitrage opportunities.

The above makes it clear that a market with arbitrage opportunities would be a disorderly
market – too disorderly to model. The remarkable thing is the converse. It turns out that the
minimal requirement of absence of arbitrage opportunities is enough to allow one to build a model
of a financial market which – while admittedly idealised – is realistic enough both to provide real
insight and to handle the mathematics necessary to price standard contingent claims. We shall
see that arbitrage arguments suffice to determine prices - the arbitrage pricing technique. For an
accessible treatment rather different to ours, see e.g. Allingham (1991).

To explain the fundamental arguments of the arbitrage pricing technique we use the following:

Example.

Consider an investor who acts in a market in which only three financial assets are traded: (riskless)
bonds B (bank account), stocks S and European Call options C with strike K = 1 on the stock.
The investor may invest today, time t = 0, in all three assets, leave his investment until time
t = T and get his returns back then (we assume the option expires at t = T , also). We assume
the current £ prices of the financial assets are given by

B(0) = 1, S(0) = 1, C(0) = 0.2

and that at t = T there can be only two states of the world: an up-state with £ prices

B(T, u) = 1.25, S(T, u) = 1.75, and therefore C(T, u) = 0.75,

and a down-state with £ prices

B(T, d) = 1.25, S(T, d) = 0.75, and therefore C(T, d) = 0.
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Financial asset Number of Total amount in £
Bond 10 10
Stock 10 10
Call 25 5

Table 1.2: Original portfolio

Now our investor has a starting capital of £25, and divides it as in Table 1.2 below (we call such
a division a portfolio). Depending of the state of the world at time t = T this portfolio will give
the £ return shown in Table 1.3. Can the investor do better? Let us consider the restructured

State of the world Bond Stock Call Total

Up 12.5 17.5 18.75 48.75
Down 12.5 7.5 0 20.

Table 1.3: Return of original portfolio

portfolio of Table 1.4. This portfolio requires only an investment of £24.6. We compute its return

Financial asset Number of Total amount in £
Bond 11.8 11.8
Stock 7 7
Call 29 5.8

Table 1.4: Restructured portfolio

in the different possible future states (Table 1.5). We see that this portfolio generates the same
time t = T return while costing only £24.6 now, a saving of £0.4 against the first portfolio. So
the investor should use the second portfolio and have a free lunch today!

In the above example the investor was able to restructure his portfolio, reducing the current
(time t = 0) expenses without changing the return at the future date t = T in both possible states
of the world. So there is an arbitrage possibility in the above market situation, and the prices
quoted are not arbitrage (or market) prices. If we regard (as we shall do) the prices of the bond
and the stock (our underlying) as given, the option must be mispriced. We will develop in this
book models of financial market (with different degrees of sophistication) which will allow us to
find methods to avoid (or to spot) such pricing errors. For the time being, let us have a closer
look at the differences between portfolio 1, consisting of 10 bonds, 10 stocks and 25 call options,
in short (10, 10, 25), and portfolio 2, of the form (11.8, 7, 29). The difference (from the point of
view of portfolio 1, say) is the following portfolio, D: (−1.8, 3,−4). Sell short three stocks (see
below), buy four options and put £1.8 in your bank account. The left-over is exactly the £0.4
of the example. But what is the effect of doing that? Let us consider the consequences in the
possible states of the world. From Table 1.6 below, we see in both cases that the effects of the
different positions of the portfolio offset themselves. But clearly the portfolio generates an income
at t = 0 and is therefore itself an arbitrage opportunity.

If we only look at the position in bonds and stocks, we can say that this position covers us
against possible price movements of the option, i.e. having £1.8 in your bank account and being
three stocks short has the same time t = T effects of having four call options outstanding against
us. We say that the bond/stock position is a hedge against the position in options.

Let us emphasise that the above arguments were independent of the preferences and plans of
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State of the world Bond Stock Call Total
Up 14.75 12.25 21.75 48.75
Down 14.75 5.25 0 20.

Table 1.5: Return of the restructured portfolio

world is in state up world is in state down

exercise option 3 option is worthless 0
buy 3 stocks at 1.75 −5.25 buy 3 stocks at 0.75 −2.25
sell bond 2.25 sell bond 2.25

Balance 0 Balance 0

Table 1.6: Difference portfolio

the investor. They were also independent of the interpretation of t = T : it could be a fixed time,
maybe a year from now, but it could refer to the happening of a certain event, e.g. a stock hitting
a certain level, exchange rates at a certain level, etc.

1.3 Arbitrage Relationships

We will in this section use arbitrage-based arguments (arbitrage pricing technique) to develop
general bounds on the value of options. Such bounds, deduced from the underlying assumption
that no arbitrage should be possible, allow one to test the plausibility of sophisticated financial
market models.

In our analysis here we use stocks as the underlying.

1.3.1 Fundamental Determinants of Option Values

We consider the determinants of the option value in table 1.7 below. Since we restrict ourselves
to non-dividend paying stocks we don’t have to consider cash dividends as another natural deter-
minant.

Current stock price S(t)
Strike price K

Stock volatility σ
Time to expiry T − t
Interest rates r

Table 1.7: Determinants affecting option value

We now examine the effects of the single determinants on the option prices (all other factors
remaining unchanged).

We saw that at expiry the only variables that mattered were the stock price S(T ) and strike
price K: remember the payoffs C = (S(T ) − K)+, P = (S(T ) − K)−(:= max{K − S(T ), 0}).
Looking at the payoffs, we see that an increase in the stock price will increase (decrease) the value
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of a call (put) option (recall all other factors remain unchanged). The opposite happens if the
strike price is increased: the price of a call (put) option will go down (up).

When we buy an option, we bet on a favourable outcome. The actual outcome is uncertain; its
uncertainty is represented by a probability density; favourable outcomes are governed by the tails
of the density (right or left tail for a call or a put option). An increase in volatility flattens out the
density and thickens the tails, so increases the value of both call and put options. Of course, this
argument again relies on the fact that we don’t suffer from (with the increase of volatility more
likely) more severe unfavourable outcomes – we have the right, but not the obligation, to exercise
the option.

A heuristic statement of the effects of time to expiry or interest rates is not so easy to make.
In the simplest of models (no dividends, interest rates remain fixed during the period under
consideration), one might argue that the longer the time to expiry the more can happen to the
price of a stock. Therefore a longer period increases the possibility of movements of the stock price
and hence the value of a call (put) should be higher the more time remains before expiry. But
only the owner of an American-type option can react immediately to favourable price movements,
whereas the owner of a European option has to wait until expiry, and only the stock price then
is relevant. Observe the contrast with volatility: an increase in volatility increases the likelihood
of favourable outcomes at expiry, whereas the stock price movements before expiry may cancel
out themselves. A longer time until expiry might also increase the possibility of adverse effects
from which the stock price has to recover before expiry. We see that by using purely heuristic
arguments we are not able to make precise statements. One can, however, show by explicit
arbitrage arguments that an increase in time to expiry leads to an increase in the value of call
options as well as put options. (We should point out that in case of a dividend-paying stock the
statement is not true in general for European-type options.)

To qualify the effects of the interest rate we have to consider two aspects. An increase in the
interest rate tends to increase the expected growth rate in an economy and hence the stock price
tends to increase. On the other hand, the present value of any future cash flows decreases. These
two effects both decrease the value of a put option, while the first effect increases the value of a
call option. However, it can be shown that the first effect always dominates the second effect, so
the value of a call option will increase with increasing interest rates.

The above heuristic statements, in particular the last, will be verified again in appropriate
models of financial markets, see §4.5.4 and §6.2.3.

We summarise in table 1.8 the effect of an increase of one of the parameters on the value of
options on non-dividend paying stocks while keeping all others fixed:

Parameter (increase) Call Put

Stock price Positive Negative
Strike price Negative Positive
Volatility Positive Positive

Interest rates Positive Negative
Time to expiry Positive Positive

Table 1.8: Effects of parameters

We would like to emphasise again that these results all assume that all other variables remain
fixed, which of course is not true in practice. For example stock prices tend to fall (rise) when
interest rates rise (fall) and the observable effect on option prices may well be different from the
effects deduced under our assumptions.

Cox and Rubinstein (1985), p. 37–39, discuss other possible determining factors of option
value, such as expected rate of growth of the stock price, additional properties of stock price
movements, investors’ attitudes toward risk, characteristics of other assets and institutional envi-
ronment (tax rules, margin requirements, transaction costs, market structure). They show that
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in many important circumstances the influence of these variables is marginal or even vanishing.

1.3.2 Arbitrage bounds

We now use the principle of no-arbitrage to obtain bounds for option prices. Such bounds, de-
duced from the underlying assumption that no arbitrage should be possible, allow one to test
the plausibility of sophisticated financial market models. We focus on European options (puts
and calls) with identical underlying (say a stock S), strike K and expiry date T . Furthermore we
assume the existence of a risk-free bank account (bond) with constant interest rate r (continuously
compounded) during the time interval [0, T ]. We start with a fundamental relationship:

Proposition 1.3.1. We have the following put-call parity between the prices of the underlying
asset S and European call and put options on stocks that pay no dividends:

S + P − C = Ke−r(T−t). (1.1)

Proof. Consider a portfolio consisting of one stock, one put and a short position in one call
(the holder of the portfolio has written the call); write V (t) for the value of this portfolio. Then

V (t) = S(t) + P (t)− C(t)

for all t ∈ [0, T ]. At expiry we have

V (T ) = S(T ) + (S(T )−K)− − (S(T )−K)+ = S(T ) + K − S(T ) = K.

This portfolio thus guarantees a payoff K at time T . Using the principle of no-arbitrage, the
value of the portfolio must at any time t correspond to the value of a sure payoff K at T , that is
V (t) = Ke−r(T−t).

Having established (1.1), we concentrate on European calls in the following.

Proposition 1.3.2. The following bounds hold for European call options:

max
{

S(t)− e−r(T−t)K, 0
}

=
(
S(t)− e−r(T−t)K

)+

≤ C(t) ≤ S(t).

Proof. That C ≥ 0 is obvious, otherwise ‘buying’ the call would give a riskless profit now and
no obligation later.

Similarly the upper bound C ≤ S must hold, since violation would mean that the right to
buy the stock has a higher value than owning the stock. This must be false, since a stock offers
additional benefits.

Now from put-call parity (1.1) and the fact that P ≥ 0 (use the same argument as above), we
have

S(t)−Ke−r(T−t) = C(t)− P (t) ≤ C(t),

which proves the last assertion.
It is immediately clear that an American call option can never be worth less than the corre-

sponding European call option, for the American option has the added feature of being able to be
exercised at any time until the maturity date. Hence (with the obvious notation): CA(t) ≥ CE(t).
The striking result we are going to show (due to R.C. Merton in 1973, (Merton 1990), Theorem
8.2) is:

Proposition 1.3.3. For a non-dividend paying stock we have

CA(t) = CE(t). (1.2)

Proof. Exercising the American call at time t < T generates the cash-flow S(t) −K. From
Proposition 1.3.2 we know that the value of the call must be greater or equal to S(t)−Ke−r(T−t),
which is greater than S(t)−K. Hence selling the call would have realised a higher cash-flow and
the early exercise of the call was suboptimal.
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Remark 1.3.1. Qualitatively, there are two reasons why an American call should not be exercised
early:

(i) Insurance. An investor who holds a call option instead of the underlying stock is ‘insured
against a fall in stock price below K, and if he exercises early, he loses this insurance.

(ii) Interest on the strike price. When the holder exercises the option, he buys the stock and pays
the strike price, K. Early exercise at t < T deprives the holder of the interest on K between
times t and T : the later he pays out K, the better.

We remark that an American put offers additional value compared to a European put.

1.4 Single-Period Market Models

1.4.1 A fundamental example

We consider a one-period model, i.e. we allow trading only at t = 0 and t = T = 1(say). Our aim
is to value at t = 0 a European derivative on a stock S with maturity T .

First idea. Model ST as a random variable on a probability space (Ω,F , IP ). The derivative
is given by H = f(ST ), i.e. it is a random variable (for a suitable function f(.)). We could then
price the derivative using some discount factor β by using the expected value of the discounted
future payoff:

H0 = IE(βH). (1.3)

Problem. How should we pick the probability measure IP? According to their preferences
investors will have different opinions about the distribution of the price ST .

Black-Scholes-Merton (Ross) approach. Use the no-arbitrage principle and construct a
hedging portfolio using only known (and already priced) securities to duplicate the payoff H. We
assume

1. Investors are non-satiable, i.e. they always prefer more to less.

2. Markets do not allow arbitrage , i.e. the possibility of risk-free profits.

From the no-arbitrage principle we see:
If it is possible to duplicate the payoff H of a derivative using a portfolio V of underlying (basic)

securities, i.e. H(ω) = V (ω), ∀ω, the price of the portfolio at t = 0 must equal the price of the
derivative at t = 0.

Let us assume there are two tradeable assets

• a riskfree bond (bank account) with B(0) = 1 and B(T ) = 1, that is the interest rate r = 0
and the discount factor β(t) = 1. (In this context we use β(t) = 1/B(t) as the discount
factor).

• a risky stock S with S(0) = 10 and two possible values at t = T

S(T ) =
{

20 with probability p
7.5 with probability 1− p.

We call this setting a (B,S)− market. The problem is to price a European call at t = 0 with
strike K = 15 and maturity T , i.e. the random payoff H = (S(T ) −K)+. We can evaluate the
call in every possible state at t = T and see H = 5 (if S(T ) = 20) with probability p and H = 0
(if S(T ) = 7.5) with probability 1− p. This is illustrated in figure (1.4.1)

The key idea now is to try to find a portfolio combining bond and stock, which synthesizes the
cash flow of the option. If such a portfolio exists, holding this portfolio today would be equivalent
to holding the option – they would produce the same cash flow in the future. Therefore the price
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today one period

S0 = 10
B0 = 1
H0 =?
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down-state

Figure 1.2: One-period example

of the option should be the same as the price of constructing the portfolio, otherwise investors
could just restructure their holdings in the assets and obtain a riskfree profit today.

We briefly present the constructing of the portfolio θ = (θ0, θ1), which in the current setting is
just a simple exercise in linear algebra. If we buy θ1 stocks and invest θ0 £ in the bank account,
then today’s value of the portfolio is

V (0) = θ0 + θ1 · S(0).

In state 1 the stock price is 20 £ and the value of the option 5 £, so

θ0 + θ1 · 20 = 5.

In state 2 the stock price is 7.5 £ and the value of the option 0 £, so

θ0 + θ1 · 7.5 = 0.

We solve this and get θ0 = −3 and θ1 = 0.4.
So the value of our portfolio at time 0 in £ is

V (0) = −3B(0) + 0.4S(0) = −3 + 0.4× 10 = 1

V (0) is called the no-arbitrage price. Every other price allows a riskless profit, since if the option
is too cheap, buy it and finance yourself by selling short the above portfolio (i.e. sell the portfolio
without possessing it and promise to deliver it at time T = 1 – this is riskfree because you own
the option). If on the other hand the option is too dear, write it (i.e. sell it in the market) and
cover yourself by setting up the above portfolio.

We see that the no-arbitrage price is independent of the individual preferences of the investor
(given by certain probability assumptions about the future, i.e. a probability measure IP ). But
one can identify a special, so called risk-neutral, probability measure IP ∗, such that

H0 = IE∗ (βH) = (p∗ · β(S1 −K) + (1− p∗) · 0) = 1.

In the above example we get from 1 = p∗5 + (1 − p∗)0 that p∗ = 0.2 This probability measure
IP ∗ is equivalent to IP , and the discounted stock price process, i.e. βtSt, t = 0, 1 follows a IP ∗-
martingale. In the above example this corresponds to S(0) = p∗S(T )up + (1− p∗)S(T )down, that
is S(0) = IE∗ (βS(T )).

We will show that the above generalizes. Indeed, we will find that the no-arbitrage condition
is equivalent to the existence of an equivalent martingale measure (first fundamental theorem of
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asset pricing) and that the property that we can price assets using the expectation operator is
equivalent to the uniqueness of the equivalent martingale measure.

Let us consider the construction of hedging strategies from a different perspective. Consider
a one-period (B,S)−market setting with discount factor β = 1. Assume we want to replicate a
derivative H (that is a random variable on some probability space (Ω,F , IP )). For each hedging
strategy θ = (θ0, θ1) we have an initial value of the portfolio V (0) = θ0 + θ1S(0) and a time
t = T value of V (T ) = θ0 + θ1S(T ). We can write V (T ) = V (0) + (V (T ) − V (0)) with G(T ) =
V (T ) − V (0) = θ1(S(T ) − S(0)) the gains from trading. So the costs C(0) of setting up this
portfolio at time t = 0 are given by C(0) = V (0), while maintaining (or achieving) a perfect hedge
at t = T requires an additional capital of C(T ) = H − V (T ). Thus we have two possibilities for
finding ’optimal’ hedging strategies:

• Mean-variance hedging. Find θ0 (or alternatively V (0)) and θ1 such that

IE
(
(H − V (T ))2

)
= IE

(
(H − (V (0) + θ1(S(T )− S(0))))2

) → min

• Risk-minimal hedging. Minimize the cost from trading, i.e. an appropriate functional in-
volving the costs C(t), t = 0, T .

In our example mean-variance hedging corresponds to the standard linear regression problem, and
so

θ1 =
CCov(H, (S(T )− S(0)))

VV ar(S(T )− S(0))
and V0 = IE(H)− θ1IE(S(T )− S(0)).

We can also calculate the optimal value of the risk functional

Rmin = VV ar(H)− θ2
1VV ar(S(T )− S(0)) = VV ar(H)(1− ρ2),

where ρ is the correlation coefficient of H and S(T ). Therefore we can’t expect a perfect hedge
in general. If however |ρ| = 1, i.e. H is a linear function of S(T ), a perfect hedge is possible. We
call a market complete if a perfect hedge is possible for all contingent claims.

1.4.2 A single-period model

We proceed to formalise and extend the above example and present in detail a simple model of
a financial market. Despite its simplicity it already has all the key features needed in the sequel
(and the reader should not hesitate to come back here from more advanced chapters to see the
bare concepts again).

We introduce in passing a little of the terminology and notation of Chapter 4; see also Harrison
and Kreps (1979). We use some elementary vocabulary from probability theory, which is explained
in detail in Chapter 2.

We consider a single period model, i.e. we have two time-indices, say t = 0, which is the
current time (date), and t = T , which is the terminal date for all economic activities considered.

The financial market contains d + 1 traded financial assets, whose prices at time t = 0 are
denoted by the vector S(0) ∈ IRd+1,

S(0) = (S0(0), S1(0), . . . , Sd(0))′

(where ′ denotes the transpose of a vector or matrix). At time T , the owner of financial asset num-
ber i receives a random payment depending on the state of the world. We model this randomness
by introducing a finite probability space (Ω,F , IP ), with a finite number |Ω| = N of points (each
corresponding to a certain state of the world) ω1, . . . , ωj , . . . , ωN , each with positive probability:
IP ({ω}) > 0, which means that every state of the world is possible. F is the set of subsets of Ω
(events that can happen in the world) on which IP (.) is defined (we can quantify how probable
these events are), here F = P(Ω) the set of all subsets of Ω. (In more complicated models it is
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not possible to define a probability measure on all subsets of the state space Ω, see §2.1.) We can
now write the random payment arising from financial asset i as

Si(T ) = (Si(T, ω1), . . . , Si(T, ωj), . . . , Si(T, ωN ))′.

At time t = 0 the agents can buy and sell financial assets. The portfolio position of an individual
agent is given by a trading strategy ϕ, which is an IRd+1 vector,

ϕ = (ϕ0, ϕ1, . . . , ϕd)′.

Here ϕi denotes the quantity of the ith asset bought at time t = 0, which may be negative as well
as positive (recall we allow short positions).

The dynamics of our model using the trading strategy ϕ are as follows: at time t = 0 we invest
the amount S(0)′ϕ =

∑d
i=0 ϕiSi(0) and at time t = T we receive the random payment S(T, ω)′ϕ =∑d

i=0 ϕiSi(T, ω) depending on the realised state ω of the world. Using the (d + 1)×N -matrix ~S,
whose columns are the vectors S(T, ω), we can write the possible payments more compactly as
~S′ϕ.

What does an arbitrage opportunity mean in our model? As arbitrage is ‘making something out
of nothing’; an arbitrage strategy is a vector ϕ ∈ IRd+1 such that S(0)′ϕ = 0, our net investment
at time t = 0 is zero, and

S(T, ω)′ϕ ≥ 0, ∀ω ∈ Ω and there exists a ω ∈ Ω such that S(T, ω)′ϕ > 0.

We can equivalently formulate this as: S(0)′ϕ < 0, we borrow money for consumption at time
t = 0, and

S(T, ω)′ϕ ≥ 0, ∀ω ∈ Ω,

i.e we don’t have to repay anything at t = T . Now this means we had a ‘free lunch’ at t = 0 at
the market’s expense.

We agreed that we should not have arbitrage opportunities in our model. The consequences
of this assumption are surprisingly far-reaching.

So assume that there are no arbitrage opportunities. If we analyse the structure of our model
above, we see that every statement can be formulated in terms of Euclidean geometry or linear
algebra. For instance, absence of arbitrage means that the space

Γ =
{(

x
y

)
, x ∈ IR, y ∈ IRN : x = −S(0)′ϕ, y = ~S′ϕ,ϕ ∈ IRd+1

}

and the space

IRN+1
+ =

{
z ∈ IRN+1 : zi ≥ 0 ∀ 0 ≤ i ≤ N ∃ i such that zi > 0

}

have no common points. A statement like that naturally points to the use of a separation theorem
for convex subsets, the separating hyperplane theorem (see e.g. Rockafellar (1970) for an account
of such results, or Appendix A). Using such a theorem we come to the following characterisation
of no arbitrage.

Theorem 1.4.1. There is no arbitrage if and only if there exists a vector

ψ ∈ IRN , ψi > 0, ∀ 1 ≤ i ≤ N

such that
~Sψ = S(0). (1.4)

Proof. The implication ‘⇐’ follows straightforwardly: assume that
S(T, ω)′ϕ ≥ 0, ω ∈ Ω for a vector ϕ ∈ IRd+1.Then

S(0)′ϕ = (~Sψ)′ϕ = ψ′~S′ϕ ≥ 0,
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since ψi > 0, ∀1 ≤ i ≤ N . So no arbitrage opportunities exist.
To show the implication ‘⇒’ we use a variant of the separating hyperplane theorem. Absence

of arbitrage means the Γ and IRN+1
+ have no common points. This means that K ⊂ IRN+1

+ defined
by

K =

{
z ∈ IRN+1

+ :
N∑

i=0

zi = 1

}

and Γ do not meet. But K is a compact and convex set, and by the separating hyperplane theorem
(Appendix C), there is a vector λ ∈ IRN+1 such that for all z ∈ K

λ′z > 0

but for all (x, y)′ ∈ Γ
λ0x + λ1y1 + . . . + λNyN = 0.

Now choosing zi = 1 successively we see that λi > 0, i = 0, . . . N , and hence by normalising we
get ψ = λ/λ0 with ψ0 = 1. Now set x = −S(0)′ϕ and y = ~S′ϕ and the claim follows.

The vector ψ is called a state-price vector. We can think of ψj as the marginal cost of obtaining
an additional unit of account in state ωj . We can now reformulate the above statement to:

There is no arbitrage if and only if there exists a state-price vector.
Using a further normalisation, we can clarify the link to our probabilistic setting. Given a

state-price vector ψ = (ψ1, . . . , ψN ), we set ψ0 = ψ1 + . . . + ψN and for any state ωj write
qj = ψj/ψ0. We can now view (q1, . . . , qN ) as probabilities and define a new probability measure
on Ω by QQ({ωj}) = qj , j = 1, . . . , N . Using this probability measure, we see that for each asset i
we have the relation

Si(0)
ψ0

=
N∑

j=1

qjSi(T, ωj) = IEQQ(Si(T )).

Hence the normalized price of the financial security i is just its expected payoff under some specially
chosen ‘risk-neutral’ probabilities. Observe that we didn’t make any use of the specific probability
measure IP in our given probability space.

So far we have not specified anything about the denomination of prices. From a technical point
of view we could choose any asset i as long as its price vector (Si(0), Si(T, ω1), . . . , Si(T, ωN ))′

only contains positive entries, and express all other prices in units of this asset. We say that we
use this asset as numéraire. Let us emphasise again that arbitrage opportunities do not depend
on the chosen numéraire. It turns out that appropriate choice of the numéraire facilitates the
probability-theoretic analysis in complex settings, and we will discuss the choice of the numéraire
in detail later on.

For simplicity, let us assume that asset 0 is a riskless bond paying one unit in all states ω ∈ Ω
at time T . This means that S0(T, ω) = 1 in all states of the world ω ∈ Ω. By the above analysis
we must have

S0(0)
ψ0

=
N∑

j=1

qjS0(T, ωj) =
N∑

j=1

qj1 = 1,

and ψ0 is the discount on riskless borrowing. Introducing an interest rate r, we must have S0(0) =
ψ0 = (1 + r)−T . We can now express the price of asset i at time t = 0 as

Si(0) =
N∑

j=1

qj
Si(T, ωj)
(1 + r)T

= IEQQ

(
Si(T )

(1 + r)T

)
.

We rewrite this as
Si(T )

(1 + r)0
= IEQQ

(
Si(T )

(1 + r)T

)
.
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In the language of probability theory we just have shown that the processes Si(t)/(1+r)t, t = 0, T
are QQ-martingales. (Martingales are the probabilists’ way of describing fair games: see Chapter 3.)
It is important to notice that under the given probability measure IP (which reflects an individual
agent’s belief or the markets’ belief) the processes Si(t)/(1 + r)t, t = 0, T generally do not form
IP -martingales.

We use this to shed light on the relationship of the probability measures IP and QQ. Since
QQ({ω}) > 0 for all ω ∈ Ω the probability measures IP and QQ are equivalent and (see Chapters 2
and 3) because of the argument above we call QQ an equivalent martingale measure. So we arrived
at yet another characterisation of arbitrage:

There is no arbitrage if and only if there exists an equivalent martingale measure.
We also see that risk-neutral pricing corresponds to using the expectation operator with respect

to an equivalent martingale measure. This concept lies at the heart of stochastic (mathematical)
finance and will be the golden thread (or roter Faden) throughout this book.

We now know how the given prices of our (d + 1) financial assets should be related in order to
exclude arbitrage opportunities, but how should we price a newly introduced financial instrument?
We can represent this financial instrument by its random payments δ(T ) = (δ(T, ω1), . . . , δ(T, ωj), . . . , δ(T, ωN ))′

(observe that δ(T ) is a vector in IRN ) at time t = T and ask for its price δ(0) at time t = 0. The
natural idea is to use an equivalent probability measure QQ and set

δ(0) = IEQQ(δ(T )/(1 + r)T )

(recall that all time t = 0 and time t = T prices are related in this way). Unfortunately, as we
don’t have a unique martingale measure in general, we cannot guarantee the uniqueness of the
t = 0 price. Put another way, we know every equivalent martingale measure leads to a reasonable
relative price for our newly created financial instrument, but which measure should one choose?

The easiest way out would be if there were only one equivalent martingale measure at our
disposal – and surprisingly enough the classical economic pricing theory puts us exactly in this
situation! Given a set of financial assets on a market the underlying question is whether we are
able to price any new financial asset which might be introduced in the market, or equivalently
whether we can replicate the cash-flow of the new asset by means of a portfolio of our original
assets. If this is the case and we can replicate every new asset, the market is called complete.

In our financial market situation the question can be restated mathematically in terms of
Euclidean geometry: do the vectors Si(T ) span the whole IRN? This leads to:

Theorem 1.4.2. Suppose there are no arbitrage opportunities. Then the model is complete if and
only if the matrix equation

~S′ϕ = δ

has a solution ϕ ∈ IRd+1 for any vector δ ∈ IRN.

Linear algebra immediately tells us that the above theorem means that the number of inde-
pendent vectors in ~S′ must equal the number of states in Ω. In an informal way we can say
that if the financial market model contains 2 (N) states of the world at time T it allows for
1 (N − 1) sources of randomness (if there is only one state we know the outcome). Likewise we
can view the numéraire asset as risk-free and all other assets as risky. We can now restate the
above characterisation of completeness in an informal (but intuitive) way as:

A financial market model is complete if it contains at least as many independent risky assets
as sources of randomness.

The question of completeness can be expressed equivalently in probabilistic language (to be
introduced in Chapter 3), as a question of representability of the relevant random variables or
whether the σ-algebra they generate is the full σ-algebra.

If a financial market model is complete, traditional economic theory shows that there exists a
unique system of prices. If there exists only one system of prices, and every equivalent martingale
measure gives rise to a price system, we can only have a unique equivalent martingale measure.
(We will come back to this important question in Chapters 4 and 6).

The (arbitrage-free) market is complete if and only if there exists a unique equivalent martingale
measure.
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Example (continued).

We formalise the above example of a binary single-period model. We have d + 1 = 2 assets and
|Ω| = 2 states of the world Ω = {ω1, ω2}. Keeping the interest rate r = 0 we obtain the following
vectors (and matrices):

S(0) =
[

S0(0)
S1(0)

]
=

[
1

150

]
, S0(T ) =

[
1
1

]
, S1(T ) =

[
180
90

]
, ~S =

[
1 1

180 90

]
.

We try to solve (1.4) for state prices, i.e. we try to find a vector ψ = (ψ1, ψ2)′, ψi > 0, i = 1, 2
such that [

1
150

]
=

[
1 1

180 90

] [
ψ1

ψ2

]
.

Now this has a solution [
ψ1

ψ2

]
=

[
2/3
1/3

]
,

hence showing that there are no arbitrage opportunities in our market model. Furthermore, since
ψ1+ψ2 = 1 we see that we already have computed risk-neutral probabilities, and so we have found
an equivalent martingale measure QQ with

QQ(ω1) =
2
3
, QQ(ω2) =

1
3
.

We now want to find out if the market is complete (or equivalently if there is a unique equivalent
martingale measure). For that we introduce a new financial asset δ with random payments δ(T ) =
(δ(T, ω1), δ(T, ω2))′. For the market to be complete, each such δ(T ) must be in the linear span of
S0(T ) and S1(T ). Now since S0(T ) and S1(T ) are linearly independent, their linear span is the
whole IR2(= IR|Ω|) and δ(T ) is indeed in the linear span. Hence we can find a replicating portfolio
by solving [

δ(T, ω1)
δ(T, ω2)

]
=

[
1 180
1 90

] [
ϕ0

ϕ1

]
.

Let us consider the example of a European option above. There δ(T, ω1) = 30, δ(T, ω2) = 0 and
the above becomes [

30
0

]
=

[
1 180
1 90

] [
ϕ0

ϕ1

]
,

with solution ϕ0 = −30 and ϕ1 = 1
3 , telling us to borrow 30 units and buy 1

3 stocks, which is
exactly what we did to set up our portfolio above. Of course an alternative way of showing market
completeness is to recognise that (1.4) above admits only one solution for risk-neutral probabilities,
showing the uniqueness of the martingale measure.

Example. Change of numéraire.

We choose a situation similar to the above example, i.e. we have d + 1 = 2 assets and |Ω| = 2
states of the world Ω = {ω1, ω2}. But now we assume two risky assets (and no bond) as the
financial instruments at our disposal. The price vectors are given by

S(0) =
[

S0(0)
S1(0)

]
=

[
1
1

]
, S0(T ) =

[
3/4
5/4

]
, S1(T ) =

[
1/2

2

]
, ~S =

[
3/4 5/4
1/2 2

]
.

We solve (1.4) and get state prices
[

ψ1

ψ2

]
=

[
6/7
2/7

]
,

showing that there are no arbitrage opportunities in our market model. So we find an equivalent
martingale measure QQ with

QQ(ω1) =
3
4
, QQ(ω2) =

1
4
.
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Since we don’t have a risk-free asset in our model, this normalisation (this numéraire) is very artifi-
cial, and we shall use one of the modelled assets as a numéraire, say S0. Under this normalisation,
we have the following asset prices (in terms of S0(t, ω)!):

S̃(0) =
[

S̃0(0)
S̃1(0)

]
=

[
S0(0)/S0(0)
S1(0)/S0(0)

]
=

[
1
1

]
,

S̃0(T ) =
[

S0(T, ω1)/S0(T, ω1)
S0(T, ω2)/S0(T, ω2)

]
=

[
1
1

]
,

S̃1(T ) =
[

S1(T, ω1)/S0(T, ω1)
S1(T, ω2)/S0(T, ω2)

]
=

[
2/3
8/5

]
.

Since the model is arbitrage-free (recall that a change of numéraire doesn’t affect the no-arbitrage
property), we are able to find risk-neutral probabilities q̃1 = 9

14 and q̃2 = 5
14 .

We now compute the prices for a call option to exchange S0 for S1. Define Z(T ) = max{S1(T )−
S0(T ), 0} and the cash flow is given by

[
Z(T, ω1)
Z(T, ω2)

]
=

[
0

3/4

]
.

There are no difficulties in finding the hedge portfolio ϕ0 = − 3
7 and ϕ1 = 9

14 and pricing the
option as Z0 = 3

14 .
We want to point out the following observation. Using S0 as numéraire we naturally write

Z(T, ω)
S0(T, ω)

= max
{

S1(T, ω)
S0(T, ω)

− 1, 0
}

and see that this seemingly complicated option is (by use of the appropriate numéraire) equivalent
to

Z̃(T, ω) = max
{

S̃1(T, ω)− 1, 0
}

,

a European call on the asset S̃1.

1.4.3 A few financial-economic considerations

The underlying principle for modelling economic behaviour of investors (or economic agents in
general) is the maximisation of expected utility, that is one assumes that agents have a utility
function U(.) and base economic decisions on expected utility considerations. For instance, as-
suming a one-period model, an economic agent might have a utility function over current(t = 0)
and future (t = T ) values of consumption

U(c0, cT ) = u(c0) + IE(βu(cT )), (1.5)

where ct is consumption at time t.
u(.) is a standard utility function expressing

• non-satiation - investors prefer more to less; u is increasing;

• risk aversion - investors reject an actuarially fair gamble; u is concave;

• and (maybe) decreasing absolute risk aversion and constant relative risk aversion.

Typical examples are power utility u(x) = (xγ−1)/γ, log utility u(x) = log(x) or quadratic utility
u(x) = x2 + dx (for which only the first two properties are true.)

Assume such an investor is offered at t = 0 at a price p a random payoff X at t = T . How much
will she buy? Denote with ξ the amount of the asset she chooses to buy and with eτ , τ = 0, T
her original consumption. Thus, her problem is

max
ξ

[u(c0) + IE[βu(cT )]]
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such that
c0 = e0 − pξ and cT = eT + Xξ.

Substituting the constraints into the objective function and differentiating with respect to ξ, we
get the first-order condition

pu′(c0) = IE [βu′(cT )X] ⇔ p = IE

[
β

u′(cT )
u′(c0)

X

]
.

The investor buys or sells more of the asset until this first-order condition is satisfied.
If we use the stochastic discount factor

m = β
u′(cT )
u′(c0)

,

we obtain the central equation
p = IE(mX). (1.6)

We can use (under regularity conditions) the random variable m to perform a change of measure,
i.e. define a probability measure IP ∗ using

IP ∗(A) = IE∗(1A) = IE(m1A).

We write (1.6) under measure IP ∗ and get

p = IE∗(X)

Returning to the initial pricing equation, we see that under IP ∗ the investor has the utility function
u(x) = x. Such an investor is called risk-neutral, and consequently one often calls the correspond-
ing measure a risk-neutral measure. An excellent discussion of these issues (and further much
deeper results) are given in Cochrane (2001).



Chapter 2

Financial Market Theory

2.1 Choice under Uncertainty

In a complete financial market model prices of derivative securities can be obtained by arbitrage
arguments. In incomplete market situations, these financial instruments carry an intrinsic risk
which cannot be hedged away. Thus in order to price these instruments further assumptions on
the investors, especially regarding their preferences towards the risks involved, are needed.

2.1.1 Preferences and the Expected Utility Theorem

Let X be some non-empty set. An element x ∈ X will be interpreted as a possible choice of an
economic agent. If presented with two choices x, y ∈ X the agent might prefer one over the other.
This can be formalized

Definition 2.1.1. A binary relation º defined on X × X is called a preference relation, if it is

• transitive: x º y, y º z ⇒ x º z.

• complete: for all x, y ∈ X either x º y or y º x.

If x º y and y º x we write x ∼ y (indifference relation). x is said to be strictly preferred to y,
denoted by x Â y, if x º y and y 6º x.

Definition 2.1.2. A numerical representation of a preference order º is a function U : X → IR
such that

y º x ⇔ U(y) ≥ U(x). (2.1)

In order to characterize existence of a numerical representation we need

Definition 2.1.3. Let º be a preference relation on X . A subset Z of X is called order dense if
for any pair x, y ∈ X such that x Â y there exists some z ∈ Z such that x º z º y.

Theorem 2.1.1. For the existence of a numerical representation of a preference relation º it
is necessary and sufficient that X contains a countable order dense subset Z. In particular, any
preference relation admits a numerical representation if X is countable.

Suppose that each possible choice of our economic agent corresponds to a probability distri-
bution on a sample space (Ω,F). Thus the set X can be identified with a subset M of the set
M1(Ω,F) of all probability distributions on (Ω,F). In the context of the theory of choice the
elements of M are sometimes called lotteries. We assume in the sequel that M is convex. The aim
in the following is to characterize the preference orders º that allow a numerical representation
of the form

24
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µ º ν ⇔
∫

Ω

u(ω)µ(dω) ≥
∫

Ω

u(ω)ν(dω) (2.2)

Definition 2.1.4. A numerical representation U of a preference order º on M is called a von
Neumann-Morgenstern representation if it is of form (2.2).

Any von Neumann-Morgenstern representation of U is affine on M in the sense that

U(αµ + (1− α)ν) = αU(µ) + (1− α)U(ν)

for all µ, ν ∈M and α ∈ [0, 1].
Affinity implies the tow following properties or axioms

• Independence (substitution) (I):
Let µ, ν, λ ∈M and α ∈ (0, 1] then

µ Â ν ⇒ αµ + (1− α)λ Â αν + (1− α)λ

• Archimedean (continuity) (A):
If µ Â λ Â ν ∈M then there exist α, β ∈ (0, 1) such that

αµ + (1− α)ν Â λ Â βµ + (1− β)ν

Theorem 2.1.2. Suppose the preference relation º on M satisfies the axioms (A) and (I). Then
there exists an affine numerical representation U of º. Moreover, U is unique up to positive affine
transformations, i.e. any other affine numerical representation Ũ with these properties is of the
form Ũ = aU + b for some a > 0 and b ∈ IR.

In case of a discrete (finite) probability distribution existence of an affine numerical represen-
tation is equivalent to existence of a von Neumann-Morgenstern representation.

In the general case one needs to introduce a further axiom, the so-called sure thing principle:
For µ, ν ∈M and A ∈ F such that µ(A) = 1:

δx Â ν for all x ∈ A ⇒ µ Â ν

and
ν Â δx for all x ∈ A ⇒ ν Â µ.

From now on we will work within the framework of the expected utility representation.

2.1.2 Risk Aversion

We focus now on individual financial assets under the assumption that their payoff distributions
at a fixed time are known. We can view these asset distributions as probability distributions on
some interval S ⊆ IR. Thus we take M as a fixed set of Borel probability measures on S. We also
assume that M is convex and contains all point masses δx for x ∈ S. Also, we assume that each
µ ∈M has a well defined expectation

m(µ) =
∫

xµ(dx) ∈ IR.

For assets with random payoff µ resp. insurance contracts with random damage m(µ) is often
called fair price resp. fair premium. However, actual prices resp. premia will typically be different
due to risk premia, which can be explained within our conceptual framework. We assume in the
sequel that preference relations have a von Neumann-Morgenstern representation.
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Definition 2.1.5. A preference relation Â on M is called monotone if

x > y implies δx Â δy.

The preference relation is called risk averse if for µ ∈M

δm(µ) Â µ unless µ = δm(µ). (2.3)

Remark 2.1.1. An economic agent is called risk-averse if his preference relation is risk averse.
A risk-averse economic agent is unwilling to accept or indifferent to every actuarially fair gamble.
An economic agent is strictly risk averse if he is unwilling to accept every actuarially fair gamble.

Proposition 2.1.1. A preference relation Â is

(i) monotone, iff u is strictly increasing.

(ii) risk averse, iff u is concave.

Proof.(i) Monotonicity is equivalent to

u(x) =
∫

u(s)δx(ds) = U(δx) > U(δy) = u(y)

for x > y.
(ii) For µ = αδx + (1− α)δy we have

m(µ) =
∫

s(αδx + (1− α)δy)(ds) = αx + (1− α)y.

So if Â is risk-averse, then
δαx+(1−α)y Â αδx + (1− α)δy

holds for all distinct x, y ∈ S and α ∈ (0, 1). Hence

u(αx + (1− α)y) > αu(x) + (1− α)u(y),

so u is strictly concave. Conversely, if u is strictly concave, then Jensen’s inequality implies risk
aversion, since

U(δm(µ)) = u

(∫
xµ(dx)

)
≥ intu(x)µ(dx) = U(µ)

with equality iff µ = δm(µ).

Definition 2.1.6. A function u : S → IR is called utility function if it is strictly concave, strictly
increasing and continuous on S.

By the intermediate value theorem there is for any µ ∈M a unique number c(µ) such that

u(c(µ)) = U(µ) =
∫

udµ. (2.4)

So δc(µ) ∼ µ, i.e. there is indifference between µ and the sure amount c(µ).

Definition 2.1.7. The certainty equivalent of µ, denoted by c(µ) is the number defined in (2.4).
It is the amount of money for which the individual is indifferent between the lottery µ and the
certain amount c(µ) The number

ρ(µ) = m(µ)− c(µ) (2.5)

is called the risk premium.
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The certainty equivalent can be viewed as the upper price an investor would pay for the asset
distribution µ. Thus the fair price must be reduced by the risk premium if one wants an agent to
buy the asset.

Consider now an investor who has the choice to invest a fraction of his wealth in a riskfree and
the remaining fraction of his wealth in a risky asset. We want to find conditions on the distribution
of the risky asset and the preferences (utility function) of the investor in order to determine his
willingness for a risky investment. Formally, we consider the following optimisation problem

f(λ) = U(µλ) =
∫

udµλ → max, (2.6)

where µλ is the distribution of
Xλ = (1− λ)X + λc

with X an integrable random variable with non-degenerate distribution µ and c ∈ S is a certain
amount.

Proposition 2.1.2. We have λ∗ = 1 if IE(X) ≤ c and λ∗ > 0 if c ≥ c(µ).

Proof. By Jensen’s inequality

f(λ) ≤ u (IE [Xλ]) = u ((1− λ)IE(X) + λc)

with equality iff λ = 1. It follows that λ∗ = 1 if the right-hand side is increasing in λ, i.e.
IE(X) ≤ c.

Now, strict concavity of u implies

f(λ) ≥ IE (1− λ)u(X) + λu(c)) = (1− λ)u(c(µ)) + λu(c)

with equality iff λ ∈ {0, 1}. The right-hand side is increasing in λ if c ≥ c(µ), and this implies
λ∗ > 0.

Remark 2.1.2. (i) (Demand for a risky asset.) The price of a risky asset must be below the
expected discounted payoff in order to attract any risk-averse investor.
(ii) (Demand for insurance.) Risk aversion can create a demand for insurance even if the insurance
premium lies above the fair price.
(iii) If u ∈ C1(IR) then

λ∗ = 1 ⇔ IE(X) ≤ c

λ∗ = 0 ⇔ c ≤ IE (Xu′(X))
IE (U ′(X))

.

We assume now that µ has a finite variance VV ar(µ). We consider the Taylor expansion of a
sufficiently smooth utility function u(x) at x = c(µ) around m = m(µ). We have

u(c(µ)) ≈ u(m) + u′(m) (c(µ)−m) = u(m) + u′(m)ρ(m).

On the other hand,

u(c(µ)) =
∫

u(x)µ(dx) +
∫ [

u(m) + u′(m) (c(µ)−m) +
1
2
u′′(m) (c(µ)−m)2 + r(x)

]
µ(dx)

≈ u(m) +
1
2
u′′(m)VV ar(µ)

(where r(x) denotes the remainder term in the Taylor expansion). So

ρ(µ) ≈ − u′′(m)
2u′(m)

VV ar(µ) =
1
2
α(m)VV ar(µ). (2.7)

Thus α(m(µ)) is the factor by which an economic agent with utility function u weighs the risk
(measured by VV ar(µ)) in order to determine the risk premium.
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Definition 2.1.8. Suppose that u is a twice continuously differentiable utility function on S. Then

α(x) = −u′′(x)
u′(x)

(2.8)

is called the Arrow-Pratt coefficient of absolute risk aversion of u at level x.

Example 2.1.1. (i) Constant absolute risk aversion (CARA). Here α(x) ≡ α for some constant.
This implies a (normalized) utility function

u(x) = 1− e−αx.

(ii) Hyperbolic absolute risk aversion (HARA). Here α(x) = (1 − γ)/x for some γ ∈ [0, 1). This
implies

u(x) = log x for γ = 0

u(x) = xγ/γ for 0 < γ < 1.

Remark 2.1.3. For u and ũ two utility functions on S with α and α̃ the corresponding Arrow-
Pratt coefficients we have

α(x) ≥ α̃(x) ∀x ∈ S ⇔ ρ(µ) ≥ ρ̃(µ)

with ρ, ρ̃ the corresponding risk premia.

It is also useful to analyse risk aversion in terms of the proportion of wealth that is invested
in a risky asset.

Definition 2.1.9. Suppose that u is a twice continuously differentiable utility function on S. Then

αR(x) = α(x)x = −x
u′′(x)
u′(x)

(2.9)

is called the Arrow-Pratt coefficient of relative risk aversion of u at level x.

Remark 2.1.4. (i) An individuals utility function displays decreasing (constant, increasing)
absolute risk aversion if α(x) is decreasing (constant, increasing).

(ii) An individuals utility function displays decreasing (constant, increasing) relative risk aver-
sion if αR(x) is decreasing (constant, increasing).

2.1.3 Further measures of risk

In this section we focus on the question whether one (risky asset) distribution is preferred to
another, regardless of the choice of a particular utility function. Assume S = IR and M = cM1

(expectation exists).

Definition 2.1.10. Let µ, ν be elements of M. We say that µ is uniformly preferred over ν,
notation µ Âuni ν if for all utility functions u

∫
udµ ≥

∫
udν. (2.10)

Âuni is also called second order stochastic dominance.

Theorem 2.1.3. For any pair µ, ν ∈M the following conditions are equivalent:

(i) u Âuni ν.
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(ii)
∫

fdµ ≥ ∫
fdν for all increasing concave functions f .

(iii) For all c ∈ IR we have ∫
(c− x)+µ(dx) ≤

∫
(c− x)+ν(dx). (2.11)

(iv) If F and G denote the respective distribution functions of µ and ν, then
c∫

−∞
F (x)dx ≤

c∫

−∞
G(x)dx ∀c ∈ IR. (2.12)

Proof. Recall u is a utility function iff it is strictly concave and strictly increasing.
(a) ⇒ (b)((b) ⇒ (a) is clear). Choose any utility function u0 with

∫
u0dµ and

∫
u0dν finite.

For instance,

u0(x) =
{

x− ex/2 + 1 if x ≤ 0√
x + 1− 1 if x ≥ 0

Then for f concave and increasing and for α ∈ [0, 1)

uα(x) = αf(x) + (1− α)u0(x)

is a utility function. Hence
∫

fdµ = lim
α↑1

∫
uαdµ ≥ lim

α↑1

∫
uαdν =

∫
fdν

(b) ⇔ (c)
”⇒”: Follows, because f(x) = −(c− x)+ is concave and increasing.
”⇐”: Let f be an increasing concave function and h = −f . Then h is convex and decreasing
and its increasing right-hand derivative h := h′+ can be regarded as a distribution function of a
non-negative (Radon) measure γ on R. Thus

h′(b) = h′(a) + γ([a, b]) for a < b.

For x < b we find

h(x) = h(b)− h′(b)(b− x) +
∫

[−∞,b]

(z − x)+γ(dz) for x < b.

Using (c), the fact that, h′(b) ≤ 0 and Fubini’s theorem we obtain
∫

(−∞,b]

hdµ

= h(b)(µ(−∞, b])− h′(b)
∫

(b− x)+µ(dx) +
∫

(−∞,b]

∫
(z − x)+µ(dx)γ(dz)

≤ h(b)(ν(−∞, b])− h′(b)
∫

(b− x)+ν(dx) +
∫

(−∞,b]

∫
(z − x)+ν(dx)γ(dz)

=
∫

(−∞,b]

hdν.

Now letting b ↑ ∞ yields
∫

fdµ ≥ ∫
fdν.

(c) ⇔ (d). By Fubini’s theorem
c∫

−∞
F (y)dy =

c∫
−∞

∫
(−∞,y)

µ(dz)dy

=
∫ ∫

1(z ≤ y ≤ c)dyµ(dz)

=
∫

(c− z)+µ(dz).
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Remark 2.1.5. (i) Also: µ ≥uni ν ⇔
λ∫
0

F−1(y)dy ≥
λ∫
0

G−1(y)dy for all λ ∈ (0, 1], where

F−1, G−1 are the inverses, or quartile functions of the distribution.

(ii) Taking f(x) = x in (b), we see µ ≥uni ν ⇒ m(µ) ≥ m(ν).

(iii) For normal distributions, we have

N (m,σ2) ≥uni N
iff m ≥ m̃ and σ2 ≤ σ̃2

If µ, ν ⊂M such that m(µ) = m(ν) and µ ≥uni ν then var(µ) ≤ var(ν). Here

var(µ) =
∫

(x−m(µ))µ(dx) =
∫

x2µ(dx)−m(µ)2

is the variance of µ (use condition (b) with f(x) = −x2) which holds under m(ν) = m(ν) for all
concave functions.

In the financial context, comparison of portfolios with known payoff distributions often use a
mean-variance approach with

µ ≥ ν ⇔ m(ν) ≥ m(ν) and var(µ) ≤ var(ν).

For normal distributions µ ≥ ν is equivalent to µ ≥uni ν, but not in general.

Example 2.1.2. µ = U [−1, 1], so m(µ) = 0, var(µ) = 1
2

1∫
−1

x2dx = 1
3

(
x3

3 |1−1

)
= 1

3 for ν =

p δ−1/2 + (1− p)δ2, with p = 4
5 we have

m(ν) =
4
5

(
−1

2

)
+

1
5
· 2 = 0, var(ν) =

4
5
· 1
4

+
1
5
· 4 = 1

Thus var(ν) > var(µ), but

∫
(− 1

2 − x)+µ(dx) = 1
2

−1/2∫
−1

(− 1
2 − x)dx = 1

2 (− 1
2x− 1

2x)
∣∣−1/2

−1

= 1
2

(
1
4 − 1

8 − 1
2 + 1

2

)
= 1/16

and ∫ (
−1

2
− x

)+

ν(dx) = 0.

So µ ≥uni ν does not hold.

A further important class of distributions is discussed in the following example.

Example 2.1.3. A real-valued random variable Y on some probability space (Ω,F , IP ) is called
log-normally distributed with parameters α ∈ R and σ ∈ R+ if it can be written as

Y = exp(α + σX)

where X has a standard normal law N (0, 1). For log-normal distributions µ ≥uni µ̆ ⇔ σ2 ≤ σ̃2

and α + 1
2σ2 ≥ α̃ + 1

2 σ̃2

Definition 2.1.11. Let µ and ν be two arbitrary probability measures on R. We say that µ
stochastically dominates ν, notation µ ≥mon ν if

∫
fdµ ≥

∫
fdν

for all bounded increasing functions f ∈ C(R). Stochastic dominance is also called first-order
stochastic dominance.
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Theorem 2.1.4. For µ, v ∈M1(R) the following conditions are equivalent

(a) µ ≥mon ν;

(b) for all x, F (x) ≤ G(x) where F, G are respectively the distribution functions of µ, ν;

(c) there exists a probability space (Ω,F , IP ) with random variables X and Y having respective
distributions µ and ν such that X ≥ Y IP−a.s.

2.2 Optimal Portfolios

2.2.1 The mean-variance approach

Recall our one-period model with securities S0, S1, . . . , Sd and security prices Si(T ) at the final
time t = T. Here S0 is the risk-free bond and S1, . . . , Sd are random variables on some prob. space
(Ω,F , IP ). For the purpose of this section we disregard the risk free asset and invest only in the
risky assets. We consider their returns

Ri(T ) =
Si(T )
Si(0)

i = 1, . . . , d

and assume we know (or have estimated) their means and covariance matrix

IE(Ri(T )) = mi i = 1, . . . , d

and
CCov(Ri(T ), Rj(T )) = σij i, j = 1, . . . , d

(Observe that Σ = (σij) is positive semi-definite).
We consider portfolio vectors ϕi ∈ Rd with ϕi ≥ 0 (in order to avoid the possibility of negative

final wealth).

Definition 2.2.1. An investor with initial wealth x > 0 is assumed to hold ϕi ≥ 0 shares of
security i, i = 1, . . . , d with

d∑

i=1

ϕ1Si(0) = x ”budget equation”.

Then the portfolio vector π = (π1, . . . , πd) is defined as

πi =
ϕi · Si(0)

x
i = 1, . . . , d

and

Rπ =
d∑

i=1

πiRi(T )

is called the corresponding portfolio return.

Remark 2.2.1. (1) The components of the portfolio vector represent the fractions of total wealth
invested in the corresponding securities. In particular, we have

d∑

i=1

πi =
1
x

d∑

i=1

ϕiSi(0) =
x

x
= 1
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(2) Let V π(T ) denote the final wealth corresponding to an initial wealth of x and a portfolio
vector ϕ, i.e.

V π(T ) =
d∑

i=1

ϕiSi(T )

then we find

Rπ =
d∑

i=1

πiRi(T ) =
d∑

i=1

ϕiSi(0)
x

· Si(T )
Si(0)

=
V π(T )

x

(3) The mean and the variance of the portfolio return are given by

IE(Rπ) =
d∑

i=1

πimi, VV ar(Rπ) =
d∑

i=1

d∑

j=1

πiσijπj

We now need to consider criteria for selecting a portfolio. The basic (by now classical) idea
of Markowitz was to look for a balance between risk (i.e. portfolio variance) and return (i.e.
portfolio mean). He considered the problem of requiring a lower bound for the portfolio return
(minimum return) and then choosing from the corresponding set the portfolio vector with the
minimal variance. Alternatively, set an upper bound for the variance and determine the portfolio
vector with the highest possible mean return. We consider

Definition 2.2.2. A portfolio is a frontier portfolio if it has the minimum variance among port-
folios that have the same expected rate of return. The set of all frontier portfolios is called the
portfolio frontier.

We now discuss briefly the assumptions of the mean-variance approach.

(1) A preference for expected return and an aversion to variance is implied by monotonicity
and strict concavity of a utility function. However, for arbitrary utility functions, expected
utility cannot be defined over just the expected return and variances. For µ ∈M assume

U(µ) =
∫

u(x)µ(dx) =
∫ ∞∑

k=0

1
ku(k)(m) (x−m)kµ(dx)

= u(m) + 1
2u′′(m)VV ar(µ) + R3(µ)

(i.e. convergence of Taylor series and interchangeability of integral). Thus, the remainder
term needs (for the general case) to be considered as well.

(2) Assuming quadratic utility, i.e.

u(x) = x− b

2
x2 , b > 0

we find
U(µ) = m− b

2
m2 = m− b

2
(VV ar(µ) + m2).

Unfortunately, quadratic utility displays satiation (negative utility for increasing wealth)
and increasing absolute risk aversion.

(3) For µi normal distributions, Rπ ∼ N , thus preferences can be expressed solely from mean
and variance.

Proposition 2.2.1. A portfolio p is a frontier portfolio if and only if the portfolio weight vector
πp is a solution to the optimisation problem

min
π

1
2
π′Σπ = min

π

1
2

∑

i

∑

j

πiπjσ
2
ij (= 2VV ar(Rπ)) (2.13)
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subject to
π′µ =

∑

i

πiµi = IE(Rπ) := mp

π′1 =
∑

i

πi = 1.

1 is an N -vector of ones, m = (m1, . . . , md) is the vector of expected returns of the assets and mp

is a fixed rate of portfolio-return.

We can solve (2.13) and write the solution as

πp = g + hmp (2.14)

with
g =

1
D

[
B(Σ−11)−A(Σ−1m)

]

h =
1
D

[
C(Σ−1m)−A(Σ−11)

]
,

where A = 1T Σ−1m = m′Σ−11, B = mT Σ−1m, C = 1′Σ−11 and D = BC −A2 > 0.
For mp = 0 we find from (2.14) that the optimal portfolio is g. Also, for mp = 1 (2.14) implies

that the optimal portfolio is g + h. Now for any given expected return mq we find

πq = g + hmq = (1−mq)g + mq(g + h).

This generalizes to

Proposition 2.2.2 (Two-fund separation). The portfolio frontier can be generated by any two
distinct frontier portfolios.

The covariance between the rates of return of any frontier portfolios p and q is

CCov (Rp, Rq) =
C

D

(
mp − A

C

)(
mq − A

C

)
+

1
C

. (2.15)

Thus, for the variances
σ2(Rp)
1/C

− (mp −A/C)2

D/C2
= 1,

which is a hyperbola in the standard-deviation – expected return (σ − µ)space.

(i) The portfolio having the minimum variance of all feasible portfolios is called minimum vari-
ance portfolio and denoted as mvp.

(ii) A frontier portfolio is efficient if it has a strictly higher expected return than the mvp.

(iii) Frontier portfolios that are neither mvp nor efficient are called inefficient.

(iv) The efficient frontier is the part of the curve lying above the point of global minimum of
standard deviation.

We can use (2.15) to show that for any frontier portfolio p (except the mvp) there exists a
unique frontier portfolio zc(p) which has zero covariance with p.

Proposition 2.2.3. If π is any envelope portfolio, then for any other portfolio (envelope or not)
π̃ we have the relation

mπ = c + βπ(mπ̃ − c) (2.16)

where

βπ =
CCov(π, π̃)

σ2
π̃

.

Furthermore, c is the expected return of a portfolio π∗ whose covariance with π̃ is zero.
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Existence of a risk-free asset has the effect of making the efficient frontier a straight line
extending from the rate to the point where the line is tangential to the original efficient frontier
for the risky assets. This leads to the one-fund theorem: There is a single fund (portfolio) such
that any efficient portfolio can be constructed as a combination of the fund and the risk-free asset.

The implication of Proposition 2.2.3 in the presence of the a risk-free asset is that there exists a
linear relationship between any security and portfolios on the efficient frontiers involving so-called
‘beta factors’.

mi − r = βi,p(mp − r), (2.17)

where βi,p is a linear factor defined as

βi,p = CCov(Ri, R
p)/σ2

p.

This extends to any portfolio q, i.e.

mq − r = βq,p(mp − r),

with βq,p = CCov(Rq, Rp)/σ2
p.

2.2.2 Capital asset pricing model

We now consider a so-called Equilibrium Model. The focus of attention is turned from the
individual investor to the aggregate market for securities (and all investors) as a whole.

We need assumptions on the investors’ behaviour and the market as a whole.

• All investors have the same one-period horizon.

• All investors can borrow or lend at the same risk-free rate.

• The markets for risky assets are perfect. Information is freely and instantly available to all
investors and no investor believes that they can affect the price of a security by their own
action.

• Investors have the same estimates of the expected returns, standard deviations and covari-
ances over the one-period horizon.

• All investors measure in the same numéraire.

Under the assumptions of mean-variance theory we have in equilibrium

1. If investors have homogeneous expectations, then they are all faced by the same efficient
frontier of risky securities.

2. If there is a risk-free asset the efficient frontier collapses for all investors to a straight line
which passes through the risk-free rate of return on the m axis and is tangential to the
efficient frontier.

All investors face the same efficient frontier because they have the same views on the available
securities. Thus:

1. All rational investors will hold a combination of the risk-free asset and the portfolio of assets
where the straight line through the risk-free return touches the original efficient frontier.

2. Because investors share the same efficient frontier they all hold the same diversified portfolio.
Because this portfolio is held in different quantities by all investors it must consist of all
risky assets in proportion to their market capitalization. It is commonly called the ’market
portfolio‘ .

3. Other strategies are non-optimal.
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The line denoting the efficient frontier is called the capital market line and its equation is

mp − r = (mM − r)
σp

σM
(2.18)

where mp is the expected return of any portfolio p on the efficient frontier; σp is the standard
deviation of the return on portfolio p; mM is the expected return on the market portfolio;σM is
the standard deviation of the market portfolio and r is the risk-free rate of return.

Thus the expected return on any portfolio is a linear function of its standard deviation. The
factor mM−r

σM
is called the market price of risk.

We can also develop an equation relating the expected return of any asset to the return of the
market

mi − r = (mM − r)βi (2.19)

where mi is the expected return on security i; βi is the beta factor of security i, defined as
CCov(Ri, R

M )/VV ar(RM ); mM is the expected return on the market portfolio and r is the risk-
free rate of return. Equation (2.19) is called the security market line. It shows that the
expected return of any security (and portfolio) can be expressed as a linear function of the securities
covariance with the market as a whole.

2.2.3 Portfolio optimisation and the absence of arbitrage

Consider the standard one-period model with assets (S0, . . . , Sd), S0 the risk-free bond with interest
rate r > 0. Denote by ϕ = (ϕ0, . . . , ϕd) portfolio vectors specifying the amount of shares of the
assets in the portfolio.

We consider an investor with utility function ũ. A rational choice of the investor’s portfolio
will be based on expected utility

IE(ũ(ϕ′S(T )))

of the payoff ϕ′S(T ) at time T , where the portfolio ϕ satisfies the budget constraint

ϕ′S(0) ≤ ω

with ω the initial of the investor. We consider the discounted net gain.

ϕ′S(T )
1 + r

− ϕ′S(0) = ϕ′Y

with Y = (Y0, Y1, . . . , Yd) and Yi = Si(T )
1+r − Si(0). (Here Y0 = 0!).

For any portfolio ϕ with ϕ′S(0) < ω, adding the risk-free investment ω−ϕ′S(0) would lead to
the strictly better portfolio (ϕ0+ω−ϕ′S(0), ϕ1, . . . , ϕd). Thus we can focus on ϕ with ϕ′S(0) = ω.
Then the payoff is an affine function of the discounted net gain

ϕ′S(T ) = (1 + r)(ϕ′Y + ω).

Since Y0 = 0 we only need the focus on the risky assets. Define the following transformation of
the original utility function ũ

u(y) = ũ((1 + r)(y + ω)).

So the optimization problem is equivalent to maximizing the expected utility of

IE(u(ϕ′Y )) (2.20)

among all ϕ ∈ IRd such that ϕ′Y is contained in the domain D of u.
Assumption A1. Either

(a) D = IR, then we admit all ϕ′ ∈ IRd, but assume the u is bounded from above (Example:
u(x) = 1− e−αx.)
or
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(b) D = [a,∞) for some a < 0. In this case we only consider portfolios with ϕ′Y ≥ a and
assume that the expected utility generated by such portfolios is finite, i.e.

IE[u(ϕ′Y )] < ∞ for all ϕ ∈ IRd with ϕ′Y ≥ a.

(Example u(x) = 1
γ (x− c)γ).

Denote by
S(D) = {ϕ ∈ IRd|ϕ′Y ∈ D}

the set of admissible portfolios for D. Our aim now is to find a ϕ∗ ∈ S(D) which maximizes the
expected utility IE(u(ϕ′Y )) among ϕ ∈ S(D).

Theorem 2.2.1. Let the above assumption A1 hold true. Then there exits a maximizer of the
expected utility

IE[n(ϕ′Y )] ϕ ∈ S(D)

if the only if the market model is arbitrage-free. Moreover, there exists at most one maximizer if
the market model is complete.

Proof. Uniqueness follows from the strict concavity of the function ϕ → IE(u(ϕ′Y )) for com-
plete market models.
In case the model is incomplete we can find a complete submodel and apply the result to this
submodel. So we may assume completeness. (Recall completeness is equivalent to η′Y = 0 ⇒
η = 0). If the model admits arbitrage, we find a vector ξ′ · Y ≥ 0IP -a.s. and IP (ξ′Y ) > 0 with no
initial investment. So for ϕ∗ optimal

IE(u(ϕ∗
′
Y )) < IE(u((ϕ∗ + η)′Y ))

a contradiction.
Assume now that the market is arbitrage-free. We consider the case D = [a,∞) for some

a ∈ (−∞, 0). We show

(i) S(D) is compact;

(ii) ϕ → IE[u(ϕ′Y )] is continuous.

Clearly, (i) and (ii) imply existence of a maximizer.
To show (i), assume that (ϕn) is a diverging sequence in S(D). By choosing a subsequence if

necessary, we may assume that ηn = ϕn/|ϕn | converges to some unit vector η ∈ IRd. Then

η′Y = lim
n→∞

ϕ′nY

|ϕn| ≥
a

|ϕn| = 0 IPa.s.

and so by completeness ϕ̃ = (−S(0)′η, η) is an arbitrage opportunity. However, under completeness
η′Y = 0 IPa.s. implies η = 0.

(ii) To show continuity it suffices to construct an integrable random variable which dominates
u(ϕ′Y ) for all ϕ ∈ S(D). Define η ∈ IRd by

ηi = 0 ∨ max
ϕ∈S(D)

ϕi < ∞.

Then, η′S(T ) ≥ ϕ′S(T ) for ϕ ∈ S(D) and hence

ϕ′Y =
ϕ′S(T )
1 + r

− ϕ′S(0) ≤ η′ · S(T )
1 + r

−
(

0 ∧ min
ξ∈S(D)

ξ′S(0)
)

.

Now η′Y is bounded below by −η′S(0) and there exists some α ∈ (0, 1] such that αη′S(0) < |a|.
Hence αη ∈ S(D) and by our assumption IE(u(αη′Y )) < ∞.
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Applying Lemma 2.2.1 first with b := −αS(0)′η and then with b := −0 ∧ min
ϕ∈S(D)

ϕ′S(0) shows

that

IE

[
u

(
η′S(0)
1 + r

− σ ∧ min
ϕ∈S(D)

ϕ′S(0)
)]

< ∞.

Lemma 2.2.1. If D = [a,∞), b < |a|, 0 < α ≤ 1, and X is a non-negative random variable, then

IE[u(αX − b)] < ∞⇒ IE[u(X)] < ∞.

Proof. The concavity of n implies that u has a decreasing right-continuous derivative u′. Hence

u(aX − b) = u(−b) +
αX−b∫
−b

u′(x)dx ≥ u(−b) +
αX∫
0

u′(y)dy

= u(−b) + α
X∫
0

u′(αz)dz ≥ u(−b) + α(u(X)− u(0)).

This shows that u(X) can be dominated by a multiple of u(αX − b) plus some constant.
We now turn to a characterization of the solution ϕ∗ of the utility maximization problem for

continuously differentiable utility functions.

Proposition 2.2.4. Let n be a twice continuously differentiable utility function on D such that
IE(u(ϕ′Y )) is finite for all ϕ ∈ S(D). Suppose that ϕ∗ is a solution of the utility maximization
problem, and that one of the following conditions is satisfied. Either

• u is defined on D = IR and bounded from above or

• u is defined on D = [a,∞) and ϕ∗ is an interior point of S(D).

Then
u′(ϕ∗

′
Y )|Y | ∈ L1(IP )

and the following first-order condition holds

IE[u′(ϕ∗
′
Y ) · Y ] = 0

Proof. For ϕ ∈ S(D) and ε ∈ [0, 1] let ϕε = εϕ + (1− ε)ϕ∗ and define

∆ε =
u(ϕ′εY )− u(ϕ∗

′
Y )

ε

The concavity of u implies that ∆ε ≥ ∆δ for ε ≤ δ, and so

∆ε ↑ u′(ε ∗′ Y )(ϕ− ϕ∗)′Y as ε ↓ 0. (2.21)

Since ∆1 = u(ε′Y ) ∈ L(IP ) monotone convergence and the optimality of ϕ∗ yield

0 ≥ IE(∆ε) ↑ IE
(
u′(ϕ∗

′
Y )(ϕ− ϕ∗)′Y

)
as ε ↓ 0. (2.22)

In particular, the expectation on the right-hand side is finite.
Both sets of assumptions imply that ϕ∗ is an interior point of S(D). Hence from (2.22) we

find by letting η = ϕ− ϕ∗ that
IE(u′(ϕ ∗′ Y )η′Y ) ≤ 0

for all η in a small ball centered in the origin of IRd. Replacing η by −η shows that the expectation
must vanish; i.e. IE(u′(ϕ∗

′
Y )η′Y ) = 0 ∀η in a small ball around the origin, so IE(u′(ϕ∗

′
Y )η′Y ) =

0.
We can now give a characterisation of an equivalent risk-neutral measure.
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Corollary 2.2.1. Suppose that the market model is arbitrage-free and that the assumptions of
Proposition 2.2.4 are satisfied for a utility function u : D → IR. Let φ∗ be a maximizer of the
expected utility. Then

dIP ∗

dIP
=

u′(ϕ∗
′
Y )

IE(u′(ϕ∗′Y ))
(2.23)

defines an equivalent risk-neutral measure.

Proof. Recall that IE∗(Y ) = 0 is the criterion for risk-neutrality which is satisfied by Proposi-
tion 2.2.4. Hence IP ∗ is a risk-neutral measure if it is well-defined, i.e.

IE(u′(ϕ∗
′
Y )) ∈ L1(IP ).

Let

c = sup {u′(x)|x ∈ D and |x| ≤ |ϕ∗|} ≤
{

u′(a) D ∈ [a,∞)

u′(−|ϕ∗|) D = IR

which is finite by our assumption that u is continuously differentiable on D. So

0 ≤ u′(ϕ∗
′
Y ) ≤ c + u′(ϕ∗

′
Y )|Y |1{|Y |≥1}

and the right-hand side has finite expectation.

Remark 2.2.2. We can now give a constructive proof of the first fundamental theorem of asset
pricing. Suppose the model is arbitrage-free.
(i) If Y is a.s. IP -a.s. bounded, then so is u′(ϕ∗

′
Y ) and the measure IP ∗ is an equivalent martingale

measure with a bounded density.
(ii) If Y is unbounded we may consider the bounded random vector

Ỹ =
Y

1 + |Y |
which also satisfies the no-arbitrage condition.

Let ϕ̃∗ be a maximiser of expected utility IE(u′(ϕ′Ỹ ). Then an equivalent martingale measure
is given by IP ∗ defined via the bounded density

dIP ∗

dIP
= c

u′(ϕ̃∗
′
Ỹ )

1 + |Y |
where c is an appropriate constant.



Chapter 3

Discrete-time models of financial
markets

3.1 The model

We will study so-called finite markets – i.e. discrete-time models of financial markets in which all
relevant quantities take a finite number of values. Following the approach of Harrison and Pliska
(1981) and Taqqu and Willinger (1987), it suffices, to illustrate the ideas, to work with a finite
probability space (Ω,F , IP ), with a finite number |Ω| of points ω, each with positive probability:
IP ({ω}) > 0.

We specify a time horizon T , which is the terminal date for all economic activities considered.
(For a simple option pricing model the time horizon typically corresponds to the expiry date of
the option.)

As before, we use a filtration IF = {Ft}T
t=0 consisting of σ-algebras F0 ⊂ F1 ⊂ · · · ⊂ FT : we

take F0 = {∅, Ω}, the trivial σ-field, FT = F = P(Ω) (here P(Ω) is the power-set of Ω, the class
of all 2|Ω| subsets of Ω: we need every possible subset, as they all – apart from the empty set –
carry positive probability).

The financial market contains d + 1 financial assets. The usual interpretation is to assume
one risk-free asset (bond, bank account) labelled 0, and d risky assets (stocks, say) labelled 1 to
d. While the reader may keep this interpretation as a mental picture, we prefer not to use it
directly. The prices of the assets at time t are random variables, S0(t, ω), S1(t, ω), . . . , Sd(t, ω)
say, non-negative and Ft-measurable (i.e. adapted: at time t, we know the prices Si(t)). We
write S(t) = (S0(t), S1(t), . . . , Sd(t))′ for the vector of prices at time t. Hereafter we refer to the
probability space (Ω,F , IP ), the set of trading dates, the price process S and the information
structure IF , which is typically generated by the price process S, together as a securities market
model.

It will be essential to assume that the price process of at least one asset follows a strictly
positive process.

Definition 3.1.1. A numéraire is a price process (X(t))T
t=0 (a sequence of random variables),

which is strictly positive for all t ∈ {0, 1, . . . , T}.
For the standard approach the risk-free bank account process is used as numéraire. In some

applications, however, it is more convenient to use a security other than the bank account and we
therefore just use S0 without further specification as a numéraire. We furthermore take S0(0) = 1
(that is, we reckon in units of the initial value of our numéraire), and define β(t) := 1/S0(t) as a
discount factor.

A trading strategy (or dynamic portfolio) ϕ is a IRd+1 vector stochastic process ϕ = (ϕ(t))T
t=1 =

((ϕ0(t, ω), ϕ1(t, ω), . . . , ϕd(t, ω))′)T
t=1 which is predictable (or previsible): each ϕi(t) is Ft−1-measurable

for t ≥ 1. Here ϕi(t) denotes the number of shares of asset i held in the portfolio at time t – to

39
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be determined on the basis of information available before time t; i.e. the investor selects his time
t portfolio after observing the prices S(t − 1). However, the portfolio ϕ(t) must be established
before, and held until after, announcement of the prices S(t). The components ϕi(t) may assume
negative as well as positive values, reflecting the fact that we allow short sales and assume that
the assets are perfectly divisible.

Definition 3.1.2. The value of the portfolio at time t is the scalar product

Vϕ(t) = ϕ(t) · S(t) :=
d∑

i=0

ϕi(t)Si(t), (t = 1, 2, . . . , T ) and Vϕ(0) = ϕ(1) · S(0).

The process Vϕ(t, ω) is called the wealth or value process of the trading strategy ϕ.

The initial wealth Vϕ(0) is called the initial investment or endowment of the investor.
Now ϕ(t) ·S(t−1) reflects the market value of the portfolio just after it has been established at

time t− 1, whereas ϕ(t) ·S(t) is the value just after time t prices are observed, but before changes
are made in the portfolio. Hence

ϕ(t) · (S(t)− S(t− 1)) = ϕ(t) ·∆S(t)

is the change in the market value due to changes in security prices which occur between time t−1
and t. This motivates:

Definition 3.1.3. The gains process Gϕ of a trading strategy ϕ is given by

Gϕ(t) :=
t∑

τ=1

ϕ(τ) · (S(τ)− S(τ − 1)) =
t∑

τ=1

ϕ(τ) ·∆S(τ), (t = 1, 2, . . . , T ).

Observe the – for now – formal similarity of the gains process Gϕ from trading in S following
a trading strategy ϕ to the martingale transform of S by ϕ.

Define S̃(t) = (1, β(t)S1(t), . . . , β(t)Sd(t))′, the vector of discounted prices, and consider the
discounted value process

Ṽϕ(t) = β(t)(ϕ(t) · S(t)) = ϕ(t) · S̃(t), (t = 1, 2, . . . , T )

and the discounted gains process

G̃ϕ(t) :=
t∑

τ=1

ϕ(τ) · (S̃(τ)− S̃(τ − 1)) =
t∑

τ=1

ϕ(τ) ·∆S̃(τ), (t = 1, 2, . . . , T ).

Observe that the discounted gains process reflects the gains from trading with assets 1 to d only,
which in case of the standard model (a bank account and d stocks) are the risky assets.

We will only consider special classes of trading strategies.

Definition 3.1.4. The strategy ϕ is self-financing, ϕ ∈ Φ, if

ϕ(t) · S(t) = ϕ(t + 1) · S(t) (t = 1, 2, . . . , T − 1). (3.1)

Interpretation.

When new prices S(t) are quoted at time t, the investor adjusts his portfolio from ϕ(t) to ϕ(t+1),
without bringing in or consuming any wealth. The following result (which is trivial in our current
setting, but requires a little argument in continuous time) shows that renormalising security prices
(i.e. changing the numéraire) has essentially no economic effects.

Proposition 3.1.1 (Numéraire Invariance). Let X(t) be a numéraire. A trading strategy ϕ
is self-financing with respect to S(t) if and only if ϕ is self-financing with respect to X(t)−1S(t).
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Proof. Since X(t) is strictly positive for all t = 0, 1, . . . , T we have the following equivalence,
which implies the claim:

ϕ(t) · S(t) = ϕ(t + 1) · S(t) (t = 1, 2, . . . , T − 1)
⇔

ϕ(t) ·X(t)−1S(t) = ϕ(t + 1) ·X(t)−1S(t) (t = 1, 2, . . . , T − 1).

Corollary 3.1.1. A trading strategy ϕ is self-financing with respect to S(t) if and only if ϕ is
self-financing with respect to S̃(t).

We now give a characterisation of self-financing strategies in terms of the discounted processes.

Proposition 3.1.2. A trading strategy ϕ belongs to Φ if and only if

Ṽϕ(t) = Vϕ(0) + G̃ϕ(t), (t = 0, 1, . . . , T ). (3.2)

Proof. Assume ϕ ∈ Φ. Then using the defining relation (3.1), the numéraire invariance theorem
and the fact that S0(0) = 1

Vϕ(0) + G̃ϕ(t) = ϕ(1) · S(0) +
t∑

τ=1

ϕ(τ) · (S̃(τ)− S̃(τ − 1))

= ϕ(1) · S̃(0) + ϕ(t) · S̃(t)

−
t−1∑
τ=1

(ϕ(τ)− ϕ(τ + 1)) · S̃(τ)− ϕ(1) · S̃(0)

= ϕ(t) · S̃(t) = Ṽϕ(t).

Assume now that (3.2) holds true. By the numéraire invariance theorem it is enough to show the
discounted version of relation (3.1). Summing up to t = 2 (3.2) is

ϕ(2) · S̃(2) = ϕ(1) · S̃(0) + ϕ(1) · (S̃(1)− S̃(0)) + ϕ(2) · (S̃(2)− S̃(1)).

Subtracting ϕ(2) · S̃(2) on both sides gives ϕ(2) · S̃(1) = ϕ(1) · S̃(1), which is (3.1) for t = 1.
Proceeding similarly – or by induction – we can show ϕ(t) · S̃(t) = ϕ(t+1) · S̃(t) for t = 2, . . . , T −1
as required.

We are allowed to borrow (so ϕ0(t) may be negative) and sell short (so ϕi(t) may be negative
for i = 1, . . . , d). So it is hardly surprising that if we decide what to do about the risky assets and
fix an initial endowment, the numéraire will take care of itself, in the following sense.

Proposition 3.1.3. If (ϕ1(t), . . . , ϕd(t))′ is predictable and V0 is F0-measurable, there is a unique
predictable process (ϕ0(t))T

t=1 such that ϕ = (ϕ0, ϕ1, . . . , ϕd)′ is self-financing with initial value of
the corresponding portfolio Vϕ(0) = V0.

Proof. If ϕ is self-financing, then by Proposition 3.1.2,

Ṽϕ(t) = V0 + G̃ϕ(t) = V0 +
t∑

τ=1

(ϕ1(τ)∆S̃1(τ) + . . . + ϕd(τ)∆S̃d(τ)).

On the other hand,

Ṽϕ(t) = ϕ(t) · S̃(t) = ϕ0(t) + ϕ1(t)S̃1(t) + . . . + ϕd(t)S̃d(t).

Equate these:

ϕ0(t) = V0 +
t∑

τ=1

(ϕ1(τ)∆S̃1(τ) + . . . + ϕd(τ)∆S̃d(τ))

−(ϕ1(t)S̃1(t) + . . . + ϕd(t)S̃d(t)),



CHAPTER 3. DISCRETE-TIME MODELS 42

which defines ϕ0(t) uniquely. The terms in S̃i(t) are

ϕi(t)∆S̃i(t)− ϕi(t)S̃i(t) = −ϕi(t)S̃i(t− 1),

which is Ft−1-measurable. So

ϕ0(t) = V0 +
t−1∑
τ=1

(ϕ1(τ)∆S̃1(τ) + . . . + ϕd(τ)∆S̃d(τ))

−(ϕ1(t)S1(t− 1) + . . . + ϕd(t)S̃d(t− 1)),

where as ϕ1, . . . , ϕd are predictable, all terms on the right-hand side are Ft−1-measurable, so ϕ0

is predictable.

Remark 3.1.1. Proposition 3.1.3 has a further important consequence: for defining a gains pro-
cess G̃ϕ only the components (ϕ1(t), . . . , ϕd(t))′ are needed. If we require them to be predictable
they correspond in a unique way (after fixing initial endowment) to a self-financing trading strat-
egy. Thus for the discounted world predictable strategies and final cash-flows generated by them
are all that matters.

We now turn to the modelling of derivative instruments in our current framework. This is done
in the following fashion.

Definition 3.1.5. A contingent claim X with maturity date T is an arbitrary FT = F-measurable
random variable (which is by the finiteness of the probability space bounded). We denote the class
of all contingent claims by L0 = L0(Ω,F , IP ).

The notation L0 for contingent claims is motivated by the them being simply random variables
in our context (and the functional-analytic spaces used later on).

A typical example of a contingent claim X is an option on some underlying asset S, then (e.g.
for the case of a European call option with maturity date T and strike K) we have a functional
relation X = f(S) with some function f (e.g. X = (S(T ) −K)+). The general definition allows
for more complicated relationships which are captured by the FT -measurability of X (recall that
FT is typically generated by the process S).

3.2 Existence of Equivalent Martingale Measures

3.2.1 The No-Arbitrage Condition

The central principle in the single period example was the absence of arbitrage opportunities, i.e.
the absence investment strategies for making profits without exposure to risk. As mentioned there
this principle is central for any market model, and we now define the mathematical counterpart
of this economic principle in our current setting.

Definition 3.2.1. Let Φ̃ ⊂ Φ be a set of self-financing strategies. A strategy ϕ ∈ Φ̃ is called
an arbitrage opportunity or arbitrage strategy with respect to Φ̃ if IP{Vϕ(0) = 0} = 1, and the
terminal wealth of ϕ satisfies

IP{Vϕ(T ) ≥ 0} = 1 and IP{Vϕ(T ) > 0} > 0.

So an arbitrage opportunity is a self-financing strategy with zero initial value, which produces
a non-negative final value with probability one and has a positive probability of a positive final
value. Observe that arbitrage opportunities are always defined with respect to a certain class of
trading strategies.

Definition 3.2.2. We say that a security market M is arbitrage-free if there are no arbitrage
opportunities in the class Φ of trading strategies.
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We will allow ourselves to use ‘no-arbitrage’ in place of ‘arbitrage-free’ when convenient.
The fundamental insight in the single-period example was the equivalence of the no-arbitrage

condition and the existence of risk-neutral probabilities. For the multi-period case we now use
probabilistic machinery to establish the corresponding result.

Definition 3.2.3. A probability measure IP ∗ on (Ω,FT ) equivalent to IP is called a martingale
measure for S̃ if the process S̃ follows a IP ∗-martingale with respect to the filtration IF . We denote
by P(S̃) the class of equivalent martingale measures.

Proposition 3.2.1. Let IP ∗ be an equivalent martingale measure (IP ∗ ∈ P(S̃)) and ϕ ∈ Φ any
self-financing strategy. Then the wealth process Ṽϕ(t) is a IP ∗-martingale with respect to the
filtration IF .

Proof. By the self-financing property of ϕ (compare Proposition 3.1.2, (3.2)), we have

Ṽϕ(t) = Vϕ(0) + G̃ϕ(t) (t = 0, 1, . . . , T ).

So
Ṽϕ(t + 1)− Ṽϕ(t) = G̃ϕ(t + 1)− G̃ϕ(t) = ϕ(t + 1) · (S̃(t + 1)− S̃(t)).

So for ϕ ∈ Φ, Ṽϕ(t) is the martingale transform of the IP ∗ martingale S̃ by ϕ (see Theorem C.4.1)
and hence a IP ∗ martingale itself.

Observe that in our setting all processes are bounded, i.e. the martingale transform theorem
is applicable without further restrictions. The next result is the key for the further development.

Proposition 3.2.2. If an equivalent martingale measure exists - that is, if P(S̃) 6= ∅ – then the
market M is arbitrage-free.

Proof. Assume such a IP ∗ exists. For any self-financing strategy ϕ, we have as before

Ṽϕ(t) = Vϕ(0) +
t∑

τ=1

ϕ(τ) ·∆S̃(τ).

By Proposition 3.2.1, S̃(t) a (vector) IP ∗-martingale implies Ṽϕ(t) is a P ∗-martingale. So the
initial and final IP ∗-expectations are the same,

IE∗(Ṽϕ(T )) = IE∗(Ṽϕ(0)).

If the strategy is an arbitrage opportunity its initial value – the right-hand side above – is
zero. Therefore the left-hand side IE∗(Ṽϕ(T )) is zero, but Ṽϕ(T ) ≥ 0 (by definition). Also each
IP ∗({ω}) > 0 (by assumption, each IP ({ω}) > 0, so by equivalence each IP ∗({ω}) > 0). This and
Ṽϕ(T ) ≥ 0 force Ṽϕ(T ) = 0. So no arbitrage is possible.

Proposition 3.2.3. If the marketM is arbitrage-free, then the class P(S̃) of equivalent martingale
measures is non-empty.

For the proof (for which we follow Schachermayer (2000) we need some auxiliary observations.
Recall the definition of arbitrage, i.e. Definition 3.2.1, in our finite-dimensional setting: a self-

financing trading strategy ϕ ∈ Φ is an arbitrage opportunity if Vϕ(0) = 0, Vϕ(T, ω) ≥ 0 ∀ω ∈ Ω
and there exists a ω ∈ Ω with Vϕ(T, ω) > 0.

Now call L0 = L0(Ω,F , IP ) the set of random variables on (Ω,F) and

L0
++(Ω,F , IP ) := {X ∈ L0 : X(ω) ≥ 0 ∀ω ∈ Ω and ∃ ω ∈ Ω such that X(ω) > 0}.

(Observe that L0
++ is a cone -closed under vector addition and multiplication by positive scalars.)

Using L0
++ we can write the arbitrage condition more compactly as

Vϕ(0) = Ṽϕ(0) = 0 ⇒ Ṽϕ(T ) 6∈ L0
++(Ω,F , IP ).
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for any self-financing strategy ϕ.
The next lemma formulates the arbitrage condition in terms of discounted gains processes.

The important advantage in using this setting (rather than a setting in terms of value processes)
is that we only have to assume predictability of a vector process (ϕ1, . . . , ϕd). Recall Remark
3.1.1 and Proposition 3.1.3 here: we can choose a process ϕ0 in such a way that the strategy
ϕ = (ϕ0, ϕ1, . . . , ϕd) has zero initial value and is self-financing.

Lemma 3.2.1. In an arbitrage-free market any predictable vector process ϕ′ = (ϕ1, . . . , ϕd) sat-
isfies

G̃ϕ′(T ) 6∈ L0
++(Ω,F , IP ).

(Observe the slight abuse of notation: for the value of the discounted gains process the zeroth
component of a trading strategy doesn’t matter. Hence we use the operator G̃ for d-dimensional
vectors as well.)

Proof. By Proposition 3.1.3 there exists a unique predictable process (ϕ0(t)) such that ϕ =
(ϕ0, ϕ1, . . . , ϕd) has zero initial value and is self-financing. Assume G̃ϕ′(T ) ∈ L0

++(Ω,F , IP ).
Then using Proposition 3.1.2,

Vϕ(T ) = β(T )−1Ṽϕ(T ) = β(T )−1(Vϕ(0) + G̃ϕ(T )) = β(T )−1G̃ϕ′(T ) ≥ 0,

and is positive somewhere (i.e. with positive probability) by definition of L0
++. Hence ϕ is an

arbitrage opportunity with respect to Φ. This contradicts the assumption that the market is
arbitrage-free.

We now define the space of contingent claims, i.e. random variables on (Ω,F), which an
economic agent may replicate with zero initial investment by pursuing some predictable trading
strategy ϕ.

Definition 3.2.4. We call the subspace K of L0(Ω,F , IP ) defined by

K = {X ∈ L0(Ω,F , IP ) : X = G̃ϕ(T ), ϕ predictable}

the set of contingent claims attainable at price 0.

We can now restate Lemma 3.2.1 in terms of spaces
A market is arbitrage-free if and only if

K ∩ L0
++(Ω,F , IP ) = ∅. (3.3)

Proof of Proposition 3.2.3. Since our market model is finite we can use results from Euclidean
geometry, in particular we can identify L0 with IR|Ω|). By assumption we have (3.3), i.e. K and
L0

++ do not intersect. So K does not meet the subset

D := {X ∈ L0
++ :

∑

ω∈Ω

X(ω) = 1}.

Now D is a compact convex set. By the separating hyperplane theorem, there is a vector λ =
(λ(ω) : ω ∈ Ω) such that for all X ∈ D

λ ·X :=
∑

ω∈Ω

λ(ω)X(ω) > 0, (3.4)

but for all G̃ϕ(T ) in K,
λ · G̃ϕ(T ) =

∑

ω∈Ω

λ(ω)G̃ϕ(T )(ω) = 0. (3.5)
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Choosing each ω ∈ Ω successively and taking X to be 1 on this ω and zero elsewhere, (3.4) tells
us that each λ(ω) > 0. So

IP ∗({ω}) :=
λ(ω)∑

ω′∈Ωλ(ω′)

defines a probability measure equivalent to IP (no non-empty null sets). With IE∗ as IP ∗-
expectation, (3.5) says that

IE∗
(
G̃ϕ(T )

)
= 0,

i.e.

IE∗
(

T∑
τ=1

ϕ(τ) ·∆S̃(τ)

)
= 0.

In particular, choosing for each i to hold only stock i,

IE∗
(

T∑
τ=1

ϕi(τ)∆S̃i(τ)

)
= 0 (i = 1, . . . , d).

Since this holds for any predictable ϕ (boundedness holds automatically as Ω is finite), the mar-
tingale transform lemma tells us that the discounted price processes (S̃i(t)) are IP ∗-martingales.

Note. Our situation is finite-dimensional, so all we have used here is Euclidean geometry. We
have a subspace, and a cone not meeting the subspace except at the origin. Take λ orthogonal to
the subspace on the same side of the subspace as the cone. The separating hyperplane theorem
holds also in infinite-dimensional situations, where it is a form of the Hahn-Banach theorem of
functional analysis.

We now combine Propositions 3.2.2 and 3.2.3 as a first central theorem in this chapter.

Theorem 3.2.1 (No-Arbitrage Theorem). The market M is arbitrage-free if and only if there
exists a probability measure IP ∗ equivalent to IP under which the discounted d-dimensional asset
price process S̃ is a IP ∗-martingale.

3.2.2 Risk-Neutral Pricing

We now turn to the main underlying question of this text, namely the pricing of contingent
claims (i.e. financial derivatives). As in chapter 1 the basic idea is to reproduce the cash flow
of a contingent claim in terms of a portfolio of the underlying assets. On the other hand, the
equivalence of the no-arbitrage condition and the existence of risk-neutral probability measures
imply the possibility of using risk-neutral measures for pricing purposes. We will explore the
relation of these tow approaches in this subsection.

We say that a contingent claim is attainable if there exists a replicating strategy ϕ ∈ Φ such
that

Vϕ(T ) = X.

So the replicating strategy generates the same time T cash-flow as does X. Working with dis-
counted values (recall we use β as the discount factor) we find

β(T )X = Ṽϕ(T ) = V (0) + G̃ϕ(T ). (3.6)

So the discounted value of a contingent claim is given by the initial cost of setting up a replication
strategy and the gains from trading. In a highly efficient security market we expect that the law
of one price holds true, that is for a specified cash-flow there exists only one price at any time
instant. Otherwise arbitrageurs would use the opportunity to cash in a riskless profit. So the
no-arbitrage condition implies that for an attainable contingent claim its time t price must be
given by the value (inital cost) of any replicating strategy (we say the claim is uniquely replicated
in that case). This is the basic idea of the arbitrage pricing theory.
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Let us investigate replicating strategies a bit further. The idea is to replicate a given cash-flow
at a given point in time. Using a self-financing trading strategy the investor’s wealth may go
negative at time t < T , but he must be able to cover his debt at the final date. To avoid negative
wealth the concept of admissible strategies is introduced. A self-financing trading strategy ϕ ∈ Φ
is called admissible if Vϕ(t) ≥ 0 for each t = 0, 1, . . . , T . We write Φa for the class of admissible
trading strategies. The modelling assumption of admissible strategies reflects the economic fact
that the broker should be protected from unbounded short sales. In our current setting all processes
are bounded anyway, so this distinction is not really needed and we use self-financing strategies
when addressing the mathematical aspects of the theory. (In fact one can show that a security
market which is arbitrage-free with respect to Φa is also arbitrage-free with respect to Φ; see
Exercises.)

We now return to the main question of the section: given a contingent claim X, i.e. a cash-flow
at time T , how can we determine its value (price) at time t < T ? For an attainable contingent
claim this value should be given by the value of any replicating strategy at time t, i.e. there should
be a unique value process (say VX(t)) representing the time t value of the simple contingent claim
X. The following proposition ensures that the value processes of replicating trading strategies
coincide, thus proving the uniqueness of the value process.

Proposition 3.2.4. Suppose the market M is arbitrage-free. Then any attainable contingent
claim X is uniquely replicated in M.

Proof. Suppose there is an attainable contingent claim X and strategies ϕ and ψ such that

Vϕ(T ) = Vψ(T ) = X,

but there exists a τ < T such that

Vϕ(u) = Vψ(u) for every u < τ and Vϕ(τ) 6= Vψ(τ).

Define A := {ω ∈ Ω : Vϕ(τ, ω) > Vψ(τ, ω)}, then A ∈ Fτ and IP (A) > 0 (otherwise just rename
the strategies). Define the Fτ -measurable random variable Y := Vϕ(τ) − Vψ(τ) and consider the
trading strategy ξ defined by

ξ(u) =
{

ϕ(u)− ψ(u), u ≤ τ
1Ac(ϕ(u)− ψ(u)) + 1A(Y β(τ), 0, . . . , 0), τ < u ≤ T.

The idea here is to use ϕ and ψ to construct a self-financing strategy with zero initial investment
(hence use their difference ξ) and put any gains at time τ in the savings account (i.e. invest them
riskfree) up to time T .

We need to show formally that ξ satisfies the conditions of an arbitrage opportunity. By
construction ξ is predictable and the self-financing condition (3.1) is clearly true for t 6= τ , and
for t = τ we have using that ϕ, ψ ∈ Φ

ξ(τ) · S(τ) = (ϕ(τ)− ψ(τ)) · S(τ) = Vϕ(τ)− Vψ(τ),

ξ(τ + 1) · S(τ) = 1Ac(ϕ(τ + 1)− ψ(τ + 1)) · S(τ) + 1AY β(τ)S0(τ)
= 1Ac(ϕ(τ)− ψ(τ)) · S(τ) + 1A(Vϕ(τ)− Vψ(τ))β(τ)β−1(τ)
= Vϕ(τ)− Vψ(τ).

Hence ξ is a self-financing strategy with initial value equal to zero. Furthermore

Vξ(T ) = 1Ac(ϕ(T )− ψ(T )) · S(T ) + 1A(Y β(τ), 0, . . . , 0) · S(T )

= 1AY β(τ)S0(T ) ≥ 0

and
IP{Vξ(T ) > 0} = IP{A} > 0.

Hence the market contains an arbitrage opportunity with respect to the class Φ of self-financing
strategies. But this contradicts the assumption that the market M is arbitrage-free.

This uniqueness property allows us now to define the important concept of an arbitrage price
process.
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Definition 3.2.5. Suppose the market is arbitrage-free. Let X be any attainable contingent claim
with time T maturity. Then the arbitrage price process πX(t), 0 ≤ t ≤ T or simply arbitrage price
of X is given by the value process of any replicating strategy ϕ for X.

The construction of hedging strategies that replicate the outcome of a contingent claim (for
example a European option) is an important problem in both practical and theoretical applications.
Hedging is central to the theory of option pricing. The classical arbitrage valuation models, such
as the Black-Scholes model ((Black and Scholes 1973), depend on the idea that an option can
be perfectly hedged using the underlying asset (in our case the assets of the market model), so
making it possible to create a portfolio that replicates the option exactly. Hedging is also widely
used to reduce risk, and the kinds of delta-hedging strategies implicit in the Black-Scholes model
are used by participants in option markets. We will come back to hedging problems subsequently.

Analysing the arbitrage-pricing approach we observe that the derivation of the price of a
contingent claim doesn’t require any specific preferences of the agents other than nonsatiation, i.e.
agents prefer more to less, which rules out arbitrage. So, the pricing formula for any attainable
contingent claim must be independent of all preferences that do not admit arbitrage. In particular,
an economy of risk-neutral investors must price a contingent claim in the same manner. This
fundamental insight, due to Cox and Ross (Cox and Ross 1976) in the case of a simple economy –
a riskless asset and one risky asset - and in its general form due to Harrison and Kreps (Harrison
and Kreps 1979), simplifies the pricing formula enormously. In its general form the price of an
attainable simple contingent claim is just the expected value of the discounted payoff with respect
to an equivalent martingale measure.

Proposition 3.2.5. The arbitrage price process of any attainable contingent claim X is given by
the risk-neutral valuation formula

πX(t) = β(t)−1IE∗ (Xβ(T )|Ft) ∀t = 0, 1, . . . , T, (3.7)

where IE∗ is the expectation operator with respect to an equivalent martingale measure IP ∗.

Proof. Since we assume the the market is arbitrage-free there exists (at least) an equivalent mar-
tingale measure IP ∗. By Proposition 3.2.1 the discounted value process Ṽϕ of any self-financing
strategy ϕ is a IP ∗-martingale. So for any contingent claim X with maturity T and any replicating
trading strategy ϕ ∈ Φ we have for each t = 0, 1, . . . , T

πX(t) = Vϕ(t) = β(t)−1Ṽϕ(t)

= β(t)−1E∗(Ṽϕ(T )|Ft) (as Ṽϕ(t) is a IP ∗-martingale)

= β(t)−1E∗(β(T )Vϕ(T )|Ft) (undoing the discounting)

= β(t)−1E∗(β(T )X|Ft) (as ϕ is a replicating strategy for X).

3.3 Complete Markets: Uniqueness of Equivalent Martin-
gale Measures

The last section made clear that attainable contingent claims can be priced using an equivalent
martingale measure. In this section we will discuss the question of the circumstances under which
all contingent claims are attainable. This would be a very desirable property of the market M,
because we would then have solved the pricing question (at least for contingent claims) completely.
Since contingent claims are merely FT -measurable random variables in our setting, it should be
no surprise that we can give a criterion in terms of probability measures. We start with:
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Definition 3.3.1. A market M is complete if every contingent claim is attainable, i.e. for every
FT -measurable random variable X ∈ L0 there exists a replicating self-financing strategy ϕ ∈ Φ
such that Vϕ(T ) = X.

In the case of an arbitrage-free market M one can even insist on replicating nonnegative
contingent claims by an admissible strategy ϕ ∈ Φa. Indeed, if ϕ is self-financing and IP ∗ is an
equivalent martingale measure under which discounted prices S̃ are IP ∗-martingales (such IP ∗ exist
since M is arbitrage-free and we can hence use the no-arbitrage theorem (Theorem 3.2.1)), Ṽϕ(t)
is also a IP ∗-martingale, being the martingale transform of the martingale S̃ by ϕ (see Proposition
3.2.1). So

Ṽϕ(t) = E∗(Ṽϕ(T )|Ft) (t = 0, 1, . . . , T ).

If ϕ replicates X, Vϕ(T ) = X ≥ 0, so discounting, Ṽϕ(T ) ≥ 0, so the above equation gives
Ṽϕ(t) ≥ 0 for each t. Thus all the values at each time t are non-negative – not just the final value
at time T – so ϕ is admissible.

Theorem 3.3.1 (Completeness Theorem). An arbitrage-free market M is complete if and
only if there exists a unique probability measure IP ∗ equivalent to IP under which discounted asset
prices are martingales.

Proof. ‘⇒’: Assume that the arbitrage-free market M is complete. Then for any FT -
measurable random variable X ( contingent claim), there exists an admissible (so self-financing)
strategy ϕ replicating X: X = Vϕ(T ). As ϕ is self-financing, by Proposition 3.1.2,

β(T )X = Ṽϕ(T ) = Vϕ(0) +
T∑

τ=1

ϕ(τ) ·∆S̃(τ).

We know by the no-arbitrage theorem (Theorem 3.2.1) that an equivalent martingale measure IP ∗

exists; we have to prove uniqueness. So, let IP1, IP2 be two such equivalent martingale measures.
For i = 1, 2, (Ṽϕ(t))T

t=0 is a IPi-martingale. So,

IEi(Ṽϕ(T )) = IEi(Ṽϕ(0)) = Vϕ(0),

since the value at time zero is non-random (F0 = {∅, Ω}) and β(0) = 1. So

IE1(β(T )X) = IE2(β(T )X).

Since X is arbitrary, IE1, IE2 have to agree on integrating all integrands. Now IEi is expectation
(i.e. integration) with respect to the measure IPi, and measures that agree on integrating all
integrands must coincide. So IP1 = IP2, giving uniqueness as required.

‘⇐’: Assume that the arbitrage-free marketM is incomplete: then there exists a non-attainable
FT -measurable random variable X (a contingent claim). By Proposition 3.1.3, we may confine
attention to the risky assets S1, . . . , Sd, as these suffice to tell us how to handle the numéraire S0.

Consider the following set of random variables:

K̃ :=

{
Y ∈ L0 : Y = Y0 +

T∑
t=1

ϕ(t) ·∆S̃(t), Y0 ∈ IR , ϕ predictable

}
.

(Recall that Y0 is F0-measurable and set ϕ = ((ϕ1(t), . . . , ϕd(t))′)T
t=1 with predictable compo-

nents.) Then by the above reasoning, the discounted value β(T )X does not belong to K̃, so K̃ is
a proper subset of the set L0 of all random variables on Ω (which may be identified with IR|Ω|).
Let IP ∗ be a probability measure equivalent to IP under which discounted prices are martingales
(such IP ∗ exist by the no-arbitrage theorem (Theorem 3.2.1). Define the scalar product

(Z, Y ) → IE∗(ZY )
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on random variables on Ω. Since K̃ is a proper subset, there exists a non-zero random variable Z
orthogonal to K̃ (since Ω is finite, IR|Ω| is Euclidean: this is just Euclidean geometry). That is,

IE∗(ZY ) = 0, ∀ Y ∈ K̃.

Choosing the special Y = 1 ∈ K̃ given by ϕi(t) = 0, t = 1, 2, . . . , T ; i = 1, . . . , d and Y0 = 1 we
find

IE∗(Z) = 0.

Write ‖X‖∞ := sup{|X(ω)| : ω ∈ Ω}, and define IP ∗∗ by

IP ∗∗({ω}) =
(

1 +
Z(ω)

2 ‖Z‖∞

)
IP ∗({ω}).

By construction, IP ∗∗ is equivalent to IP ∗ (same null sets - actually, as IP ∗ ∼ IP and IP has no
non-empty null sets, neither do IP ∗, IP ∗∗). From IE∗(Z) = 0, we see that

∑
IP ∗∗(ω) = 1, i.e. is a

probability measure. As Z is non-zero, IP ∗∗ and IP ∗ are different. Now

IE∗∗
(

T∑
t=1

ϕ(t) ·∆S̃(t)

)
=

∑

ω∈Ω

IP ∗∗(ω)

(
T∑

t=1

ϕ(t, ω) ·∆S̃(t, ω)

)

=
∑

ω∈Ω

(
1 +

Z(ω)
2 ‖Z‖∞

)
IP ∗(ω)

(
T∑

t=1

ϕ(t, ω) ·∆S̃(t, ω)

)
.

The ‘1’ term on the right gives

IE∗
(

T∑
t=1

ϕ(t) ·∆S̃(t)

)
,

which is zero since this is a martingale transform of the IP ∗-martingale S̃(t) (recall martingale
transforms are by definition null at zero). The ‘Z’ term gives a multiple of the inner product

(Z,

T∑
t=1

ϕ(t) ·∆S̃(t)),

which is zero as Z is orthogonal to K̃ and
∑T

t=1 ϕ(t) ·∆S̃(t) ∈ K̃. By the martingale transform
lemma (Lemma C.4.1), S̃(t) is a IP ∗∗-martingale since ϕ is an arbitrary predictable process. Thus
IP ∗∗ is a second equivalent martingale measure, different from IP ∗. So incompleteness implies
non-uniqueness of equivalent martingale measures, as required.

Martingale Representation.

To say that every contingent claim can be replicated means that every IP ∗-martingale (where IP ∗ is
the risk-neutral measure, which is unique) can be written, or represented, as a martingale transform
(of the discounted prices) by a replicating (perfect-hedge) trading strategy ϕ. In stochastic-
process language, this says that all IP ∗-martingales can be represented as martingale transforms
of discounted prices. Such martingale representation theorems hold much more generally, and are
very important. For background, see (Revuz and Yor 1991, Yor 1978).

3.4 The Cox-Ross-Rubinstein Model

In this section we consider simple discrete-time financial market models. The development of the
risk-neutral pricing formula is particularly clear in this setting since we require only elementary
mathematical methods. The link to the fundamental economic principles of the arbitrage pricing
method can be obtained equally straightforwardly. Moreover binomial models, by their very
construction, give rise to simple and efficient numerical procedures. We start with the paradigm of
all binomial models - the celebrated Cox-Ross-Rubinstein model (Cox, Ross, and Rubinstein 1979).
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3.4.1 Model Structure

We take d = 1, that is, our model consists of two basic securities. Recall that the essence of the
relative pricing theory is to take the price processes of these basic securities as given and price
secondary securities in such a way that no arbitrage is possible.

Our time horizon is T and the set of dates in our financial market model is t = 0, 1, . . . , T .
Assume that the first of our given basic securities is a (riskless) bond or bank account B, which
yields a riskless rate of return r > 0 in each time interval [t, t + 1], i.e.

B(t + 1) = (1 + r)B(t), B(0) = 1.

So its price process is B(t) = (1 + r)t, t = 0, 1, . . . , T. Furthermore, we have a risky asset (stock)
S with price process

S(t + 1) =
{

(1 + u)S(t) with probability p,
(1 + d)S(t) with probability 1− p,

t = 0, 1, . . . , T − 1

with −1 < d < u, S0 ∈ IR+
0 (see Fig. 3.4.1 below).

S(0) »»»»»»»»»»»»
p

S(1) = (1 + u)S(0)

XXXXXXXXXXXX1− p S(1) = (1 + d)S(0)

Figure 3.1: One-step tree diagram

Alternatively we write this as

Z(t + 1) :=
S(t + 1)

S(t)
− 1, t = 0, 1, . . . , T − 1.

We set up a probabilistic model by considering the Z(t), t = 1, . . . , T as random variables defined
on probability spaces (Ω̃t, F̃t, ĨP t) with

Ω̃t = Ω̃ = {d, u},
F̃t = F̃ = P(Ω̃) = {∅, {d}, {u}, Ω̃},
ĨP t = ĨP with ĨP ({u}) = p, ĨP ({d}) = 1− p, p ∈ (0, 1).

On these probability spaces we define

Z(t, u) = u and Z(t, d) = d, t = 1, 2, . . . , T.

Our aim, of course, is to define a probability space on which we can model the basic securities
(B,S). Since we can write the stock price as

S(t) = S(0)
t∏

τ=1

(1 + Z(τ)), t = 1, 2, . . . , T,

the above definitions suggest using as the underlying probabilistic model of the financial market
the product space (Ω,F , IP ) (see e.g. (Williams 1991) ch. 8), i.e.

Ω = Ω̃1 × . . .× Ω̃T = Ω̃T = {d, u}T ,
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with each ω ∈ Ω representing the successive values of Z(t), t = 1, 2, . . . , T . Hence each ω ∈ Ω is
a T -tuple ω = (ω̃1, . . . , ω̃T ) and ω̃t ∈ Ω̃ = {d, u}. For the σ-algebra we use F = P(Ω) and the
probability measure is given by

IP ({ω}) = ĨP 1({ω1})× . . .× ĨPT ({ωT }) = ĨP ({ω1})× . . .× ĨP ({ωT }).

The role of a product space is to model independent replication of a random experiment. The
Z(t) above are two-valued random variables, so can be thought of as tosses of a biased coin; we
need to build a probability space on which we can model a succession of such independent tosses.

Now we redefine (with a slight abuse of notation) the Z(t), t = 1, . . . , T as random variables
on (Ω,F , IP ) as (the tth projection)

Z(t, ω) = Z(t, ωt).

Observe that by this definition (and the above construction) Z(1), . . . , Z(T ) are independent and
identically distributed with

IP (Z(t) = u) = p = 1− IP (Z(t) = d).

To model the flow of information in the market we use the obvious filtration

F0 = {∅, Ω} (trivial σ-field),
Ft = σ(Z(1), . . . , Z(t)) = σ(S(1), . . . , S(t)),

FT = F = P(Ω) (class of all subsets of Ω).

This construction emphasises again that a multi-period model can be viewed as a sequence of
single-period models. Indeed, in the Cox-Ross-Rubinstein case we use identical and independent
single-period models. As we will see in the sequel this will make the construction of equivalent
martingale measures relatively easy. Unfortunately we can hardly defend the assumption of inde-
pendent and identically distributed price movements at each time period in practical applications.

Remark 3.4.1. We used this example to show explicitly how to construct the underlying probability
space. Having done this in full once, we will from now on feel free to take for granted the existence
of an appropriate probability space on which all relevant random variables can be defined.

3.4.2 Risk-Neutral Pricing

We now turn to the pricing of derivative assets in the Cox-Ross-Rubinstein market model. To do
so we first have to discuss whether the Cox-Ross-Rubinstein model is arbitrage-free and complete.

To answer these questions we have, according to our fundamental theorems (Theorems 3.2.1 and
3.3.1), to understand the structure of equivalent martingale measures in the Cox-Ross-Rubinstein
model. In trying to do this we use (as is quite natural and customary) the bond price process B(t)
as numéraire.

Our first task is to find an equivalent martingale measure QQ such that the Z(1), . . . , Z(T )
remain independent and identically distributed, i.e. a probability measure QQ defined as a product
measure via a measure Q̃Q on (Ω̃, F̃) such that Q̃Q({u}) = q and Q̃Q({d}) = 1− q. We have:

Proposition 3.4.1. (i) A martingale measure QQ for the discounted stock price S̃ exists if and
only if

d < r < u. (3.8)

(ii) If equation (3.8) holds true, then there is a unique such measure in P characterised by

q =
r − d

u− d
. (3.9)
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Proof. Since S(t) = S̃(t)B(t) = S̃(t)(1 + r)t, we have Z(t + 1) = S(t + 1)/S(t) − 1 = (S̃(t +
1)/S̃(t))(1 + r) − 1. So, the discounted price (S̃(t)) is a QQ-martingale if and only if for t =
0, 1, . . . , T − 1

IEQQ[S̃(t + 1)|Ft] = S̃(t) ⇔ IEQQ[(S̃(t + 1)/S̃(t))|Ft] = 1
⇔ IEQQ[Z(t + 1)|Ft] = r.

But Z(1), . . . , Z(T ) are mutually independent and hence Z(t+1) is independent of Ft = σ(Z(1), . . . , Z(t)).
So

r = IEQQ(Z(t + 1)|Ft) = IEQQ(Z(t + 1)) = uq + d(1− q)

is a weighted average of u and d; this can be r if and only if r ∈ [d, u]. As QQ is to be equivalent
to IP and IP has no non-empty null sets, r = d, u are excluded and (3.8) is proved.

To prove uniqueness and to find the value of q we simply observe that under (3.8)

u× q + d× (1− q) = r

has a unique solution. Solving it for q leads to the above formula.
From now on we assume that (3.8) holds true. Using the above Proposition we immediately

get:

Corollary 3.4.1. The Cox-Ross-Rubinstein model is arbitrage-free.

Proof. By Proposition 3.4.1 there exists an equivalent martingale measure and this is by the no-
arbitrage theorem (Theorem 3.2.1) enough to guarantee that the Cox-Ross-Rubinstein model is
free of arbitrage.

Uniqueness of the solution of the linear equation (4.7) under (3.8) gives completeness of the
model, by the completeness theorem (Theorem 3.3.1):

Proposition 3.4.2. The Cox-Ross-Rubinstein model is complete.

One can translate this result – on uniqueness of the equivalent martingale measure – into
financial language. Completeness means that all contingent claims can be replicated. If we do
this in the large, we can do it in the small by restriction, and conversely, we can build up our full
model from its constituent components. To summarize:

Corollary 3.4.2. The multi-period model is complete if and only if every underlying single-period
model is complete.

We can now use the risk-neutral valuation formula to price every contingent claim in the
Cox-Ross-Rubinstein model.

Proposition 3.4.3. The arbitrage price process of a contingent claim X in the Cox-Ross-Rubinstein
model is given by

πX(t) = B(t)IE∗ (X/B(T )|Ft) ∀t = 0, 1, . . . , T,

where IE∗ is the expectation operator with respect to the unique equivalent martingale measure IP ∗

characterised by p∗ = (r − d)/(u− d).

Proof. This follows directly from Proposition 3.2.4 since the Cox-Ross-Rubinstein model is arbitrage-
free and complete.

We now give simple formulas for pricing (and hedging) of European contingent claims X =
f(ST ) for suitable functions f (in this simple framework all functions f : IR → IR). We use the
notation

Fτ (x, p) :=
τ∑

j=0

(
τ

j

)
pj(1− p)τ−jf

(
x(1 + u)j(1 + d)τ−j

)
(3.10)

Observe that this is just an evaluation of f(S(j)) along the probability-weighted paths of the price
process. Accordingly, j, τ − j are the numbers of times Z(i) takes the two possible values d, u.
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Corollary 3.4.3. Consider a European contigent claim with expiry T given by X = f(ST ). The
arbitrage price process πX(t), t = 0, 1, . . . , T of the contingent claim is given by (set τ = T − t)

πX(t) = (1 + r)−τFτ (St, p
∗). (3.11)

Proof. Recall that

S(t) = S(0)
t∏

j=1

(1 + Z(j)), t = 1, 2, . . . , T.

By Proposition 3.4.3 the price ΠX(t) of a contingent claim X = f(ST ) at time t is

πX(t) = (1 + r)−(T−t)IE∗[f(S(T ))|Ft]

= (1 + r)−(T−t)IE∗
[

f

(
S(t)

T∏

i=t+1

(1 + Z(i))

)∣∣∣∣∣Ft

]

= (1 + r)−(T−t)IE∗
[
f

(
S(t)

T∏

i=t+1

(1 + Z(i))

)]

= (1 + r)−τFτ (S(t), p∗).

We used the role of independence property of conditional expectations from Proposition B.5.1 in
the next-to-last equality. It is applicable since S(t) is Ft-measurable and Z(t + 1), . . . , Z(T ) are
independent of Ft.

An immediate consequence is the pricing formula for the European call option, i.e. X = f(ST )
with f(x) = (x−K)+.

Corollary 3.4.4. Consider a European call option with expiry T and strike price K written on
(one share of) the stock S. The arbitrage price process ΠC(t), t = 0, 1, . . . , T of the option is given
by (set τ = T − t)

ΠC(t) = (1 + r)−τ
τ∑

j=0

(
τ

j

)
p∗j(1− p∗)τ−j(S(t)(1 + u)j(1 + d)τ−j −K)+. (3.12)

For a European put option, we can either argue similarly or use put-call parity.

3.4.3 Hedging

Since the Cox-Ross-Rubinstein model is complete we can find unique hedging strategies for repli-
cating contingent claims. Recall that this means we can find a self-financing portfolio ϕ(t) =
(ϕ0(t), ϕ1(t)), ϕ predictable, such that the value process Vϕ(t) = ϕ0(t)B(t) + ϕ1(t)S(t) satisfies

ΠX(t) = Vϕ(t), for all t = 0, 1, . . . , T.

Using the bond as numéraire we get the discounted equation

Π̃X(t) = Ṽϕ(t) = ϕ0(t) + ϕ1(t)S̃(t), for all t = 0, 1, . . . , T.

By the pricing formula, Proposition 3.4.3, we know the arbitrage price process and using the
restriction of predictability of ϕ, this leads to a unique replicating portfolio process ϕ. We can
compute this portfolio process at any point in time as follows. The equation Π̃X(t) = ϕ0(t) +
ϕ1(t)S̃(t) has to be true for each ω ∈ Ω and each t = 1, . . . , T . Given such a t we only can use
information up to (and including) time t− 1 to ensure that ϕ is predictable. Therefore we know
S(t − 1), but we only know that S(t) = (1 + Z(t))S(t− 1). However, the fact that Z(t) ∈ {d, u}
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leads to the following system of equations, which can be solved for ϕ0(t) and ϕ1(t) uniquely.
Making the dependence of Π̃X on S̃ explicit, we have

Π̃X(t, S̃t−1(1 + u)) = ϕ0(t) + ϕ1(t)S̃t−1(1 + u),
Π̃X(t, S̃t−1(1 + d)) = ϕ0(t) + ϕ1(t)S̃t−1(1 + d).

The solution is given by

ϕ0(t) =
S̃t−1(1 + u)Π̃X(t, S̃t−1(1 + d))− S̃t−1(1 + d)Π̃X(t, S̃t−1(1 + u))

S̃t−1(1 + u)− S̃t−1(1 + d)

=
(1 + u)Π̃X(t, S̃t−1(1 + d))− (1 + d)Π̃X(t, S̃t−1(1 + u))

(u− d)

ϕ1(t) =
Π̃X(t, S̃t−1(1 + u))− Π̃X(t, S̃t−1(1 + d))

S̃t−1(1 + u)− S̃t−1(1 + d)

=
Π̃X(t, S̃t−1(1 + u))− Π̃X(t, S̃t−1(1 + d))

S̃t−1(u− d)
.

Observe that we only need to have information up to time t − 1 to compute ϕ(t), hence ϕ is
predictable. We make this rather abstract construction more transparent by constructing the
hedge portfolio for the European contingent claims.

Proposition 3.4.4. The perfect hedging strategy ϕ = (ϕ0, ϕ1) replicating the European contingent
claim f(ST ) with time of expiry T is given by (again using τ = T − t)

ϕ1(t) =
(1 + r)−τ (Fτ (St−1(1 + u), p∗)− Fτ (St−1(1 + d), p∗))

St−1(u− d)
,

ϕ0(t) =
(1 + u)Fτ (St−1(1 + d), p∗)− (1 + d)Fτ (St−1(1 + u), p∗)

(u− d)(1 + r)T
.

Proof. (1 + r)−τFτ (St, p
∗) must be the value of the portfolio at time t if the strategy ϕ = (ϕ(t))

replicates the claim:
ϕ0(t)(1 + r)t + ϕ1(t)S(t) = (1 + r)−τFτ (St, p

∗).

Now S(t) = S(t− 1)(1 + Z(t)) = S(t− 1)(1 + u) or S(t− 1)(1 + d), so:

ϕ0(t)(1 + r)t + ϕ1(t)S(t− 1)(1 + u) = (1 + r)−τFτ (St−1(1 + u), p∗),

ϕ0(t)(1 + r)t + ϕ1(t)S(t− 1)(1 + d) = (1 + r)−τFτ (St−1(1 + d), p∗).

Subtract:

ϕ1(t)S(t− 1)(u− d) = (1 + r)−τ (Fτ (St−1(1 + u), p∗)− Fτ (St−1(1 + d), p∗)) .

So ϕ1(t) in fact depends only on S(t− 1), thus yielding the predictability of ϕ, and

ϕ1(t) =
(1 + r)−τ (Fτ (St−1(1 + u), p∗)− Fτ (St−1(1 + d), p∗))

S(t− 1)(u− d)
.

Using any of the equations in the above system and solving for ϕ0(t) completes the proof.
To write the corresponding result for the European call, we use the following notation.

C(τ, x) :=
τ∑

j=0

(
τ

j

)
p∗j(1− p∗)τ−j(x(1 + u)j(1 + d)τ−j −K)+.

Then (1 + r)−τC(τ, x) is value of the call at time t (with time to expiry τ) given that S(t) = x.
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Corollary 3.4.5. The perfect hedging strategy ϕ = (ϕ0, ϕ1) replicating the European call option
with time of expiry T and strike price K is given by

ϕ1(t) =
(1 + r)−τ (C(τ, St−1(1 + u))− C(τ, St−1(1 + d)))

St−1(u− d)
,

ϕ0(t) =
(1 + u)C(τ, St−1(1 + d))− (1 + d)C(τ, St−1(1 + u))

(u− d)(1 + r)T
.

Notice that the numerator in the equation for ϕ1(t) is the difference of two values of C(τ, x),
with the larger value of x in the first term (recall u > d). When the payoff function C(τ, x) is an
increasing function of x, as for the European call option considered here, this is non-negative. In
this case, the Proposition gives ϕ1(t) ≥ 0: the replicating strategy does not involve short-selling.
We record this as:

Corollary 3.4.6. When the payoff function is a non-decreasing function of the asset price S(t),
the perfect-hedging strategy replicating the claim does not involve short-selling of the risky asset.

If we do not use the pricing formula from Proposition 3.4.3 (i.e. the information on the price
process), but only the final values of the option (or more generally of a contingent claim) we
are still able to compute the arbitrage price and to construct the hedging portfolio by backward
induction. In essence this is again only applying the one-period calculations for each time interval
and each state of the world. We outline this procedure for the European call starting with the last
period [T − 1, T ]. We have to choose a replicating portfolio ϕ(T ) = (ϕ0(T ), ϕ1(T ) based on the
information available at time T − 1 (and so FT−1-measurable). So for each ω ∈ Ω the following
equation has to hold:

πX(T, ω) = ϕ0(T, ω)B(T, ω) + ϕ1(T, ω)S(T, ω).

Given the information FT−1 we know all but the last coordinate of ω, and this gives rise to two
equations (with the same notation as above):

πX(T, ST−1(1 + u)) = ϕ0(T )(1 + r)T + ϕ1(T )ST−1(1 + u),

πX(T, ST−1(1 + d)) = ϕ0(T )(1 + r)T + ϕ1(T )ST−1(1 + d).

Since we know the payoff structure of the contingent claim time T , for example in case of a
European call. πX(T, ST−1(1 + u)) = ((1 + u)ST−1 − K)+ and πX(T, ST−1(1 + d)) = ((1 +
d)ST−1 −K)+, we can solve the above system and obtain

ϕ0(T ) =
(1 + u)ΠX(T, ST−1(1 + d))− (1 + d)ΠX(T, ST−1(1 + u))

(u− d)(1 + r)

ϕ1(t) =
ΠX(T, ST−1(1 + u))−ΠX(T, ST−1(1 + d))

ST−1(u− d)
.

Using this portfolio one can compute the arbitrage price of the contingent claim at time T − 1
given that the current asset price is ST−1 as

πX(T − 1, ST−1) = ϕ0(T, ST−1)(1 + r)T−1 + ϕ1(T, ST−1)S(T − 1).

Now the arbitrage prices at time T −1 are known and one can repeat the procedure to successively
compute the prices at T − 2, . . . , 1, 0.

The advantage of our risk-neutral pricing procedure over this approach is that we have a single
formula for the price of the contingent claim at all times t at once, and don’t have to go to a
backwards induction only to compute a price at a special time t.
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3.5 Binomial Approximations

Suppose we observe financial assets during a continuous time period [0, T ]. To construct a stochas-
tic model of the price processes of these assets (to, e.g. value contingent claims) one basically has
two choices: one could model the processes as continuous-time stochastic processes (for which the
theory of stochastic calculus is needed) or one could construct a sequence of discrete-time models
in which the continuous-time price processes are approximated by discrete-time stochastic pro-
cesses in a suitable sense. We describe the the second approach now by examining the asymptotic
properties of a sequence of Cox-Ross-Rubinstein models.

3.5.1 Model Structure

We assume that all random variables subsequently introduced are defined on a suitable probability
space (Ω,F , IP ). We want to model two assets, a riskless bond B and a risky stock S, which we
now observe in a continuous-time interval [0, T ]. To transfer the continuous-time framework into a
binomial structure we make the following adjustments. Looking at the nth Cox-Ross-Rubinstein
model in our sequence, there is a prespecified number kn of trading dates. We set ∆n = T/kn and
divide [0, T ] in kn subintervals of length ∆n, namely Ij = [j∆n, (j + 1)∆n], j = 0, . . . , kn− 1. We
suppose that trading occurs only at the equidistant time points tn,j = j∆n, j = 0, . . . , kn− 1. We
fix rn as the riskless interest rate over each interval Ij , and hence the bond process (in the nth
model) is given by

B(tn,j) = (1 + rn)j , j = 0, . . . , kn.

In the continuous-time model we compound continuously with spot rate r ≥ 0 and hence the bond
price process B(t) is given by B(t) = ert. In order to approximate this process in the discrete-time
framework, we choose rn such that

1 + rn = er∆n . (3.13)

With this choice we have for any j = 0, . . . , kn that (1 + rn)j = exp(rj∆n) = exp(rtn,j). Thus we
have approximated the bond process exactly at the time points of the discrete model.

Next we model the one-period returns S(tn,j+1)/S(tn,j) of the stock by a family of random
variables Zn,i; i = 1, . . . , kn taking values {dn, un} with

IP (Zn,i = un) = pn = 1− IP (Zn,i = dn)

for some pn ∈ (0, 1) (which we specify later). With these Zn,j we model the stock price process
Sn in the nth Cox-Ross-Rubinstein model as

Sn(tn,j) = Sn(0)
j∏

i=1

(1 + Zn,i) , j = 0, 1, . . . , kn.

With the specification of the one-period returns we get a complete description of the discrete
dynamics of the stock price process in each Cox-Ross-Rubinstein model. We call such a finite
sequence Zn = (Zn,i)kn

i=1 a lattice or tree. The parameters un, dn, pn, kn differ from lattice to
lattice, but remain constant throughout a specific lattice. In the triangular array (Zn,i), i =
1, . . . , kn; n = 1, 2, . . . we assume that the random variables are row-wise independent (but we
allow dependence between rows). The approximation of a continuous-time setting by a sequence
of lattices is called the lattice approach.

It is important to stress that for each n we get a different discrete stock price process Sn(t)
and that in general these processes do not coincide on common time points (and are also different
from the price process S(t)).

Turning back to a specific Cox-Ross-Rubinstein model, we now have as in §3.4 a discrete-
time bond and stock price process. We want arbitrage-free financial market models and therefore
have to choose the parameters un, dn, pn accordingly. An arbitrage-free financial market model is
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guaranteed by the existence of an equivalent martingale measure, and by Proposition 3.4.1 (i) the
(necessary and) sufficient condition for that is

dn < rn < un.

The risk-neutrality approach implies that the expected (under an equivalent martingale measure)
one-period return must equal the one-period return of the riskless bond and hence we get (see
Proposition 3.4.1(ii))

p∗n =
rn − dn

un − dn
. (3.14)

So the only parameters to choose freely in the model are un and dn. In the next sections we
consider some special choices.

3.5.2 The Black-Scholes Option Pricing Formula

We now choose the parameters in the above lattice approach in a special way. Assuming the
risk-free rate of interest r as given, we have by (3.13) 1 + rn = er∆n, and the remaining degrees of
freedom are resolved by choosing un and dn. We use the following choice:

1 + un = eσ
√

∆n , and 1 + dn = (1 + un)−1 = e−σ
√

∆n .

By condition (3.14) the risk-neutral probabilities for the corresponding single period models are
given by

p∗n =
rn − dn

un − dn
=

er∆n − e−σ
√

∆n

eσ
√

∆n − e−σ
√

∆n
.

We can now price contingent claims in each Cox-Ross-Rubinstein model using the expectation
operator with respect to the (unique) equivalent martingale measure characterised by the proba-
bilities p∗n (compare §3.4.2). In particular we can compute the price ΠC(t) at time t of a European
call on the stock S with strike K and expiry T by formula (3.12) of Corollary 3.4.4. Let us
reformulate this formula slightly. We define

an = min
{
j ∈ IN0|S(0)(1 + un)j(1 + dn)kn−j > K

}
. (3.15)

Then we can rewrite the pricing formula (3.12) for t = 0 in the setting of the nth Cox-Ross-
Rubinstein model as

ΠC(0) = (1 + rn)−kn

kn∑

j=an

(
kn

j

)
p∗n

j(1− p∗n)kn−j(S(0)(1 + un)j(1 + dn)kn−j −K)

= S(0)




kn∑

j=an

(
kn

j

)(
p∗n(1 + un)

1 + rn

)j (
(1− p∗n)(1 + dn)

1 + rn

)kn−j



−(1 + rn)−knK




kn∑

j=an

(
kn

j

)
p∗jn (1− p∗n)kn−j


.

Denoting the binomial cumulative distribution function with parameters (n, p) as Bn,p(.) we see
that the second bracketed expression is just

B̄kn,p∗n(an) = 1−Bkn,p∗n(an).

Also the first bracketed expression is B̄kn,p̂n(an) with

p̂n =
p∗n(1 + un)

1 + rn
.
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That p̂n is indeed a probability can be shown straightforwardly. Using this notation we have in
the nth Cox-Ross-Rubinstein model for the price of a European call at time t = 0 the following
formula:

Π(n)
C (0) = Sn(0)B̄kn,p̂n(an)−K(1 + rn)−knB̄kn,p∗n(an). (3.16)

(We stress again that the underlying is Sn(t), dependent on n, but Sn(0) = S(0) for all n.) We
now look at the limit of this expression.

Proposition 3.5.1. We have the following limit relation:

lim
n→∞

Π(n)
C (0) = ΠBS

C (0)

with ΠBS
C (0) given by the Black-Scholes formula (we use S = S(0) to ease the notation)

ΠBS
C (0) = SN(d1(S, T ))−Ke−rT N(d2(S, T )). (3.17)

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√

t
,

d2(s, t) = d1(s, t)− σ
√

t =
log(s/K) + (r − σ2

2 )t
σ
√

t

and N(.) is the standard normal cumulative distribution function.

Proof. Since Sn(0) = S (say) all we have to do to prove the proposition is to show

(i) lim
n→∞

B̄kn,p̂n(an) = N(d1(S, T )),

(ii) lim
n→∞

B̄kn,p∗n(an) = N(d2(S, T )).

These statements involve the convergence of distribution functions.
To show (i) we interpret

B̄kn,p̂n(an) = IP (an ≤ Yn ≤ kn)

with (Yn) a sequence of random variables distributed according to the binomial law with param-
eters (kn, p̂n). We normalise Yn to

Ỹn =
Yn − IE(Yn)√

V ar(Yn)
=

Yn − knp̂n√
knp̂n(1− p̂n)

=

kn∑

j=1

(Bj,n − p̂n)

√
knp̂n(1− p̂n)

,

where Bj,n, j = 1, . . . , kn; n = 1, 2, . . . are row-wise independent Bernoulli random variables with
parameter p̂n. Now using the central limit theorem we know that for αn → α, βn → β we have

lim
n→∞

IP (αn ≤ Ỹn ≤ βn) = N(β)−N(α).

By definition we have
IP (an ≤ Yn ≤ kn) = IP

(
αn ≤ Ỹn ≤ βn

)

with

αn =
an − knp̂n√
knp̂n(1− p̂n)

and βn =
kn(1− p̂n)√
knp̂n(1− p̂n)

.

Using the following limiting relations:

lim
n→∞

p̂n =
1
2
, lim

n→∞
kn(1− 2p̂n)

√
∆n = −T

( r

σ
+

σ

2

)
,
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and the defining relation for an, formula (3.15), we get

lim
n→∞

αn = lim
n→∞

log(K/S) + knσ
√

∆n

2σ
√

∆n

− knp̂n

√
knp̂n(1− p̂n)

= lim
n→∞

log(K/S) + σkn

√
∆n(1− 2p̂n)

2σ
√

kn∆np̂n(1− p̂n)

=
log(K/S)− (r + σ2

2 )T

σ
√

T
= −d1(S, T ).

Furthermore we have
lim

n→∞
βn = lim

n→∞

√
knp̂−1

n (1− p̂n) = +∞.

So N(βn) → 1, N(αn) → N(−d1) = 1−N(d1), completing the proof of (i).
To prove (ii) we can argue in very much the same way and arrive at parameters α∗n and β∗n

with p̂n replaced by p∗n. Using the following limiting relations:

lim
n→∞

p∗n =
1
2
, lim

n→∞
kn(1− 2p∗n)

√
∆n = T

(σ

2
− r

σ

)
,

we get

lim
n→∞

α∗n = lim
n→∞

log(K/S) + σn
√

∆n(1− 2p∗n)
2σ

√
n∆np∗n(1− p∗n)

=
log(K/S)− (r − σ2

2 )T

σ
√

T
= −d2(s, T ).

For the upper limit we get

lim
n→∞

β∗n = lim
n→∞

√
kn(p∗n)−1(1− p∗n) = +∞,

whence (ii) follows similarly.
By the above proposition we have derived the classical Black-Scholes European call option

valuation formula as an asymptotic limit of option prices in a sequence of Cox-Ross-Rubinstein
type models with a special choice of parameters. We will therefore call these models discrete
Black-Scholes models. Let us mention here that in the continuous-time Black-Scholes model the
dynamics of the (stochastic) stock price process S(t) are modelled by a geometric Brownian motion
(or exponential Wiener process). The sample paths of this stochastic price process are almost all
continuous and the probability law of S(t) at any time t is lognormal. In particular the time T
distribution of log{S(T )/S(0)} is N(Tµ, Tσ2). Looking back at the construction of our sequence
of Cox-Ross-Rubinstein models we see that

log
Sn(T )
S(0)

=
kn∑

i=1

log(1 + Zn,i),

with log(Zn,i) Bernoulli random variables with

IP (log(1 + Zn,i) = σ
√

∆n) = pn = 1− IP (log(1 + Zn,i) = −σ
√

∆n).

By the (triangular array version) of the central limit theorem we know that log Sn(T )
S(0) properly

normalised converges in distribution to a random variable with standard normal distribution.
Doing similar calculations as in the above proposition we can compute the normalising constants
and get

lim
n→∞

log
Sn(T )
S(0)

∼ N(T (r − σ2/2), Tσ2),

i.e. Sn(T )
S(0) is in the limit lognormally distributed.
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3.6 American Options

Consider a general multi-period framework. The holder of an American derivative security can
‘exercise’ in any period t and receive payment f(St) (or more general a non-negative payment ft).
In order to hedge such an option, we want to construct a self-financing trading strategy ϕt such
that for the corresponding value process Vϕ(t)

Vϕ(0) = x initial capital
Vϕ(t) ≥ f(St), ∀t. (3.18)

Such a hedging portfolio is minimal, if for a stopping time τ

Vϕ(τ) = f(Sτ ).

Our aim in the following will be to discuss existence and construction of such a stopping time.

3.6.1 Stopping Times, Optional Stopping and Snell Envelopes

A random variable τ taking values in {0, 1, 2, . . . ; +∞} is called a stopping time (or optional time)
if

{τ ≤ n} = {ω : τ(ω) ≤ n} ∈ Fn ∀ n ≤ ∞.

From {τ = n} = {τ ≤ n} \ {τ ≤ n − 1} and {τ ≤ n} =
⋃

k≤n{τ = k}, we see the equivalent
characterisation

{τ = n} ∈ Fn ∀ n ≤ ∞.

Call a stopping time τ bounded, if there is a constant K such that IP (τ ≤ K) = 1. (Since
τ(ω) ≤ K for some constant K and all ω ∈ Ω \N with IP (N) = 0 all identities hold true except
on a null set, i.e. almost surely.)

Example. Suppose (Xn) is an adapted process and we are interested in the time of first entry
of X into a Borel set B (typically one might have B = [c,∞)):

τ = inf{n ≥ 0 : Xn ∈ B}.

Now {τ ≤ n} =
⋃

k≤n{Xk ∈ B} ∈ Fn and τ = ∞ if X never enters B. Thus τ is a stopping time.
Intuitively, think of τ as a time at which you decide to quit a gambling game: whether or not

you quit at time n depends only on the history up to and including time n – NOT the future.
Thus stopping times model gambling and other situations where there is no foreknowledge, or
prescience of the future; in particular, in the financial context, where there is no insider trading.
Furthermore since a gambler cannot cheat the system the expectation of his hypothetical fortune
(playing with unit stake) should equal his initial fortune.

Theorem 3.6.1 (Doob’s Stopping-Time Principle (STP)). Let τ be a bounded stopping
time and X = (Xn) a martingale. Then Xτ is integrable, and

IE(Xτ ) = IE(X0).

Proof. Assume τ(ω) ≤ K for all ω, where we can take K to be an integer and write

Xτ(ω)(ω) =
∞∑

k=0

Xk(ω)1{τ(ω)=k} =
K∑

k=0

Xk(ω)1{τ(ω)=k}
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Thus using successively the linearity of the expectation operator, the martingale property of X,
the Fk-measurability of {τ = k} and finally the definition of conditional expectation, we get

IE(Xτ ) = IE

[
K∑

k=0

Xk1{τ=k}

]
=

K∑

k=0

IE
[
Xk1{τ=k}

]

=
K∑

k=0

IE
[
IE(XK |Fk)1{τ=k}

]
=

K∑

k=0

IE
[
XK1{τ=k}

]

= IE

[
XK

K∑

k=0

1{τ=k}

]
= IE(XK) = IE(X0).

The stopping time principle holds also true if X = (Xn) is a supermartingale; then the con-
clusion is

IEXτ ≤ IEX0.

Also, alternative conditions such as
(i) X = (Xn) is bounded (|Xn(ω)| ≤ L for some L and all n, ω);
(ii) IEτ < ∞ and (Xn −Xn−1) is bounded;
suffice for the proof of the stopping time principle.

The stopping time principle is important in many areas, such as sequential analysis in statistics.
We turn in the next section to related ideas specific to the gambling/financial context.

We now wish to create the concept of the σ-algebra of events observable up to a stopping time
τ , in analogy to the σ-algebra Fn which represents the events observable up to time n.

Definition 3.6.1. Let τ be a stopping time. The stopping time σ−algebra Fτ is defined to be

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, for all n}.

Proposition 3.6.1. For τ a stopping time, Fτ is a σ−algebra.

Proof. We simply have to check the defining properties. Clearly Ω, ∅ are in Fτ . Also for
A ∈ Fτ we find

Ac ∩ {τ ≤ n} = {τ ≤ n} \ (A ∩ {τ ≤ n}) ∈ Fn,

thus Ac ∈ Fτ . Finally, for a family Ai ∈ Fτ , i = 1, 2, . . . we have
( ∞⋃

i=1

Ai

)
∩ {τ ≤ n} =

∞⋃

i=1

(Ai ∩ {τ ≤ n}) ∈ Fn,

showing
⋃∞

i=1 Ai ∈ Fτ .

Proposition 3.6.2. Let σ, τ be stopping times with σ ≤ τ . Then Fσ ⊆ Fτ .

Proof. Since σ ≤ τ we have {τ ≤ n} ⊆ {σ ≤ n}. So for A ∈ Fσ we get

A ∩ {τ ≤ n} = (A ∩ {σ ≤ n}) ∩ {τ ≤ n} ∈ Fn,

since (.) ∈ Fn as A ∈ Fσ. So A ∈ Fτ .

Proposition 3.6.3. For any adapted sequence of random variables X = (Xn) and a.s. finite
stopping time τ , define

Xτ =
∞∑

n=0

Xn1{τ=n}.

Then Xτ is Fτ -measurable.



CHAPTER 3. DISCRETE-TIME MODELS 62

Proof. Let B be a Borel set. We need to show {Xτ ∈ B} ∈ Fτ . Now using the fact that on
the set {τ = k} we have Xτ = Xk, we find

{Xτ ∈ B} ∩ {τ ≤ n} =
n⋃

k=1

{Xτ ∈ B} ∩ {τ = k} =
n⋃

k=1

{Xk ∈ B} ∩ {τ = k}.

Now sets {Xk ∈ B} ∩ {τ = k} ∈ Fk ⊆ Fn, and the result follows.
We are now in position to obtain an important extension of the Stopping-Time Principle,

Theorem 3.6.1.

Theorem 3.6.2 (Doob’s Optional-Sampling Theorem, OST). Let X = (Xn) be a martin-
gale and let σ, τ be bounded stopping times with σ ≤ τ . Then

IE [Xτ |Fσ] = Xσ

and thus IE(Xτ ) = IE(Xσ).

Proof. First observe that Xτ and Xσ are integrable (use the sum representation and the fact
that τ is bounded by an integer K) and Xσ is Fσ-measurable by Proposition 3.6.3. So it only
remains to prove that

IE(1AXτ ) = IE(1AXσ) ∀A ∈ Fσ. (3.19)

For any such fixed A ∈ Fσ, define ρ by

ρ(ω) = σ(ω)1A(ω) + τ(ω)1Ac(ω).

Since
{ρ ≤ n} = (A ∩ {σ ≤ n}) ∪ (Ac ∩ {τ ≤ n}) ∈ Fn

ρ is a stopping time, and from ρ ≤ τ we see that ρ is bounded. So the STP (Theorem 3.6.1)
implies IE(Xρ) = IE(X0) = IE(Xτ ). But

IE(Xρ) = IE (Xσ1A + Xτ1Ac) ,

IE(Xτ ) = IE (Xτ1A + Xτ1Ac) .

So subtracting yields (3.19).
We can establish a further characterisation of the martingale property.

Proposition 3.6.4. Let X = (Xn) be an adapted sequence of random variables with IE(|Xn|) < ∞
for all n and IE(Xτ ) = 0 for all bounded stopping times τ . Then X is a martingale.

Proof. Let 0 ≤ m < n,∞ and A ∈ Fm. Define a stopping time τ by τ = n1A + m1Ac . Then

0 = IE(Xτ ) = IE (Xn1A + Xm1Ac) ,

0 = IE(Xm) = IE (Xm1A + Xm1Ac) ,

and by subtraction we obtain IE (Xm1A) = IE (Xn1A). Since this holds for all A ∈ Fm,
IE(Xn|Fm) = Xm by definition of conditional expectation. This says that (Xn) is a martingale,
as required.

Write Xτ = (Xτ
n) for the sequence X = (Xn) stopped at time τ , where we define Xτ

n(ω) :=
Xτ(ω)∧n(ω).

Proposition 3.6.5. (i) If X is adapted and τ is a stopping time, then the stopped sequence Xτ

is adapted.
(ii) If X is a martingale (super-, submartingale) and τ is a stopping time, Xτ is a martingale
(super-, submartingale).
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Proof. Let Cj := 1{j≤τ}; then

Xτ∧n = X0 +
n∑

j=1

Cj(Xj −Xj−1)

(as the right is X0+
∑τ∧n

j=1 (Xj−Xj−1), which telescopes to Xτ∧n). Since {j ≤ τ} is the complement
of {τ < j} = {τ ≤ j − 1} ∈ Fj−1, (Cn) is predictable. So (Xτ

n) is adapted.
If X is a martingale, so is Xτ as it is the martingale transform of (Xn) by (Cn) (use Theorem

C.4.1). The right-hand side above is Xτ∧(n−1)+Cn(Xn−Xn−1). So taking conditional expectation
given Fn−1and using predictability of (Cn),

IE(Xτ∧n|Fn−1) = Xτ∧(n−1) + Cn(IE[Xn|Fn−1]−Xn−1).

Then Cn ≥ 0 shows that if X is a supermartingale (submartingale), so is Xτ .
We now discuss the Snell envelope, which will be an important tool for the valuation of Amer-

ican options. The idea is due to Snell (1952); for a textbook account, see e.g. Neveu (1975),
VI.

Definition 3.6.2. If X = (Xn)N
n=0 is a sequence adapted to a filtration Fn with IE(|Xn|) < ∞,

the sequence Z = (Zn)N
n=0 defined by
{

ZN := XN ,
Zn := max {Xn, IE (Zn+1|Fn)} (n ≤ N − 1)

is called the Snell envelope of X.

Theorem 3.6.3. The Snell envelope Z of X is a supermartingale, and is the smallest super-
martingale dominating X (that is, with Zn ≥ Xn for all n).

Proof. First, Zn ≥ IE(Zn+1|Fn), so Z is a supermartingale, and Zn ≥ Xn, so Z dominates
X.

Next, let Y = (Yn) be any other supermartingale dominating X; we must show Y dominates
Z also. First, since ZN = XN and Y dominates X, we must have YN ≥ ZN . Assume inductively
that Yn ≥ Zn. Then as Y is a supermartingale,

Yn−1 ≥ IE(Yn|Fn−1) ≥ IE(Zn|Fn−1),

and as Y dominates X,
Yn−1 ≥ Xn−1.

Combining,
Yn−1 ≥ max {Xn−1, IE(Zn|Fn−1)} = Zn−1.

By repeating this argument (or more formally, by backward induction), Yn ≥ Zn for all n, as
required.

Proposition 3.6.6. τ∗ := inf{n ≥ 0 : Zn = Xn} is a stopping time, and the stopped process Zτ∗

is a martingale.

Proof. Since ZN = XN , τ∗ ∈ {0, 1, . . . , N} is well-defined and clearly bounded. For k = 0,
{τ∗ = 0} = {Z0 = X0} ∈ F0; for k ≥ 1,

{τ∗ = k} = {Z0 > X0} ∩ · · · ∩ {Zk−1 > Xk−1} ∩ {Zk = Xk} ∈ Fk.

So τ∗ is a stopping time.
As in the proof of Proposition 3.6.5,

Zτ∗
n = Zn∧τ∗ = Z0 +

n∑

j=1

Cj∆Zj ,
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where Cj = 1{j≤τ∗} is predictable. For n ≤ N − 1,

Zτ∗
n+1 − Zτ∗

n = Cn+1(Zn+1 − Zn) = 1{n+1≤τ∗}(Zn+1 − Zn).

Now Zn := max {Xn, IE(Zn+1|Fn)}, and by definition of τ∗,

Zn > Xn on {n + 1 ≤ τ∗}.

So from the definition of Zn,

Zn = IE(Zn+1|Fn) on {n + 1 ≤ τ∗}.

We next prove
Zτ∗

n+1 − Zτ∗
n = 1{n+1≤τ∗}(Zn+1 − IE(Zn+1|Fn)). (3.20)

For, suppose first that τ∗ ≥ n + 1. Then the left of (3.20) is Zn+1 − Zn, the right is Zn+1 −
IE(Zn+1|Fn), and these agree on {n+1 ≤ τ∗} by above. The other possibility is that τ∗ < n+1, i.e.
τ∗ ≤ n. Then the left of (3.20) is Zτ∗−Zτ∗ = 0, while the right is zero because the indicator is zero,
completing the proof of (3.20). Now apply IE(.|Fn) to (3.20): since {n+1 ≤ τ∗} = {τ∗ ≤ n}c ∈ Fn,

IE
[
(Zτ∗

n+1 − Zτ∗
n )|Fn

]
= 1{n+1≤τ∗}IE [(Zn+1 − IE(Zn+1|Fn)) |Fn]

= 1{n+1≤τ∗} [IE(Zn+1|Fn)− IE(Zn+1|Fn)] = 0.

So IE(Zτ∗
n+1|Fn) = Zτ∗

n . This says that Zτ∗ is a martingale, as required.
Write Tn,N for the set of stopping times taking values in {n, n + 1, . . . , N} (a finite set, as Ω

is finite). Call a stopping time σ ∈ Tn,N optimal for (Xn) if

IE(Xσ|Fn) = sup{IE(Xτ |Fn) : τ ∈ Tn,N}.

We next see that the Snell envelope can be used to solve the optimal stopping problem for (Xn)
in T0,N . Recall that F0 = {∅,Ω} so IE(Y |F0) = IE(Y ) for any integrable random variable Y .

Proposition 3.6.7. τ∗ solves the optimal stopping problem for X:

Z0 = IE(Xτ∗) = sup {IE (Xτ ) : τ ∈ T0,N} .

Proof. To prove the first statement we use that (Zτ∗
n ) is a martingale and Zτ∗ = Xτ∗ ; then

Z0 = Zτ∗
0 = IE

(
Zτ∗

N

)
= IE (Zτ∗) = IE (X∗

τ ) . (3.21)

Now for any stopping time τ ∈ T0,N , since Z is a supermartingale (above), so is the stopped
process Zτ (see Proposition 3.6.5). Together with the property that Z dominates X this yields

Z0 = Zτ
0 ≥ IE (Zτ

N ) = IE (Zτ ) ≥ IE (Xτ ) . (3.22)

Combining (3.21) and (3.22) and taking the supremum on τ gives the result.
The same argument, starting at time n rather than time 0, gives

Corollary 3.6.1. If τ∗n := inf{j ≥ n : Zj = Xj},

Zn = IE(Xτ∗n |Fn) = sup {IE(Xτ |Fn) : τ ∈ Tn,N} .

As we are attempting to maximise our payoff by stopping X = (Xn) at the most advantageous
time, the Corollary shows that τ∗n gives the best stopping time that is realistic: it maximises our
expected payoff given only information currently available.

We proceed by analysing optimal stopping times. One can characterize optimality by estab-
lishing a martingale property:



CHAPTER 3. DISCRETE-TIME MODELS 65

Proposition 3.6.8. The stopping time σ ∈ T is optimal for (Xt) if and only if the following two
conditions hold.

(i) Zσ = Xσ;

(ii) Zσ is a martingale.

Proof. We start showing that (i) and (ii) imply optimality. If Zσ is a martingale then

Z0 = IE(Zσ
0 ) = IE(Zσ

N ) = IE(Zσ) = IE(Xσ),

where we used (i) for the last identity. Since Z is a supermartingale Proposition 3.6.5 implies that
Zτ is a supermartingale for any τ ∈ T0,N . Now Z dominates X, and so

Z0 = IE(Zτ
0 ) ≥ IE(Zτ

N ) = IE(Zτ ) ≥ IE(Xτ ).

Combining, σ is optimal.
Now assume that σ is optimal. Thus

Z0 = max {IE(Xτ ); τ ∈ T0,N} = IE(Xσ) ≤ IE(Zσ),

since Z dominates X. Since Zσ is a supermartingale, we also have Z0 ≥ IE(Zσ). Combining,

IE(Xσ) = Z0 = IE(Zσ).

But X ≤ Z, so Xσ ≤ Zσ, while by the above Xσ and Zσ have the same expectation. So they must
be a.s. equal: Xσ = Zσ a.s., showing (i). To see (ii), observe that for any n ≤ N

IE(Zσ) = Z0 ≥ IE(Zσ∧n) ≥ IE(Zσ) = IE(IE(Zσ|Fn)),

where the second inequality follows from Doob’s OST (Theorem 3.6.2) with the bounded stopping
times (σ ∧ n) ≤ σ and the supermartingale Z. Using that Z is a supermartingale again, we also
find

Zσ∧n ≥ IE(Zσ|Fn). (3.23)

As above, this inequality between random variables with equal expectations forces a.s. equality:
Zσ∧n = IE(Zσ|Fn) a.s.. Apply IE(.|Fn−1):

IE (Zσ∧n|Fn−1) = IE (IE(Zσ|Fn)|Fn−1) = IE(Zσ|Fn−1) = Zσ∧(n−1),

by (3.23) with n− 1 for n. This says

IE (Zσ
n |Fn−1) = Zσ

n−1,

so Zσ is a martingale.
From Proposition 3.6.6 and its definition (first time when Z and X are equal) it follows that

τ∗ is the smallest optimal stopping time . To find the largest optimal stopping time we try to
find the time when Z ’ceases to be a martingale’. In order to do so we need a structural result of
genuine interest and importance

Theorem 3.6.4 (Doob Decomposition). Let X = (Xn) be an adapted process with each Xn ∈
L1. Then X has an (essentially unique) Doob decomposition

X = X0 + M + A : Xn = X0 + Mn + An ∀n (3.24)

with M a martingale null at zero, A a predictable process null at zero. If also X is a submartingale
(‘increasing on average’), A is increasing: An ≤ An+1 for all n, a.s..
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Proof. If X has a Doob decomposition (3.24),

IE[Xn −Xn−1|Fn−1] = IE[Mn −Mn−1|Fn−1] + IE[An −An−1|Fn−1].

The first term on the right is zero, as M is a martingale. The second is An−An−1, since An (and
An−1) is Fn−1-measurable by predictability. So

IE[Xn −Xn−1|Fn−1] = An −An−1, (3.25)

and summation gives

An =
n∑

k=1

IE[Xk −Xk−1|Fk−1], a.s.

So set A0 = 0 and use this formula to define (An), clearly predictable. We then use (3.24) to
define (Mn), then a martingale, giving the Doob decomposition (3.24). To see uniqueness, assume
two decompositions, i.e. Xn = X0 + Mn + An = X0 + M̃n + Ãn, then Mn− M̃n = An− Ãn. Thus
the martingale Mn − M̃n is predictable and so must be constant a.s..

If X is a submartingale, the LHS of (3.25) is ≥ 0, so the RHS of (3.25) is ≥ 0, i.e. (An) is
increasing.

Although the Doob decomposition is a simple result in discrete time, the analogue in continuous
time – the Doob-Meyer decomposition – is deep. This illustrates the contrasts that may arise
between the theories of stochastic processes in discrete and continuous time.

Equipped with the Doob-decomposition we return to the above setting and can write

Z = Z0 + L + B

with L a martingale and B predictable and decreasing. Then M = Z0 + L is a martingale and
A = (−B) is increasing and we have Z = M −A.

Definition 3.6.3. Define a random variable ν : Ω → IN0 by setting

ν(ω) =
{

N if AN (ω) = 0
min{n ≥ 0 : An+1 > 0} if AN (ω) > 0.

Observe that ν (bounded by N) is a stopping time, since

{ν = n} =
⋃

k≤n

{Ak = 0} ∩ {An+1 > 0} ∈ Fn

as A is predictable.

Proposition 3.6.9. ν is optimal for (Xt), and it is the largest optimal stopping time for (Xt).

Proof. We use Proposition 3.6.8. Since for k ≤ ν(ω), Zk(ω) = Mk(ω)− Ak(ω) = Mk(ω), Zν

is a martingale and thus we have (ii) of Proposition 3.6.8. To see (i) we write

Zν =
N−1∑

k=0

1{ν=k}Zk + 1{ν=N}ZN

=
N−1∑

k=0

1{ν=k}max{Xk, IE(Zk+1|Fk)}+ 1{ν=N}XN .

Now IE(Zk+1|Fk) = IE(Mk+1 − Ak+1|Fk) = Mk − Ak+1. On {ν = k} we have Ak = 0 and
Ak+1 > 0, so IE(Zk+1|Fk) < Zk. Hence Zk = max{Xk, IE(Zk+1|Fk)} = Xk on the set {ν = k}.
So

Zν =
N−1∑

k=0

1{ν=k}Xk + 1{ν=N}XN = Xν ,
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which is (i) of Proposition 3.6.8. Now take τ ∈ {T }0,N with τ ≥ ν and IP (τ > ν) > 0. From the
definition of ν and the fact that A is increasing, Aτ > 0 with positive probability. So IE(Aτ ) > 0,
and

IE(Zτ ) = IE(Mτ )− IE(Aτ ) = IE(Z0)− IE(Aτ ) < IE(Z0).

So τ cannot be optimal.

3.6.2 The Financial Model

We assume now that we work in a market model (Ω,F , IF, IP ), which is complete with IP ∗ the
unique martingale measure.

Then for any hedging strategy ϕ we have that under IP ∗

M(t) = Ṽϕ(t) = β(t)Vϕ(t) (3.26)

is a martingale. Thus we can use the STP (Theorem 3.6.1) to find for any stopping time τ

Vϕ(0) = M0 = IE∗(Ṽϕ(τ)). (3.27)

Since we require Vϕ(τ) ≥ fτ (S) for any stopping time we find for the required initial capital

x ≥ sup
τ∈T

IE∗(β(τ)fτ (S)). (3.28)

Suppose now that τ∗ is such that Vϕ(τ∗) = fτ∗(S) then the strategy ϕ is minimal and since
Vϕ(t) ≥ ft(S) for all t we have

x = IE∗(β(τ∗)fτ∗(S)) = sup
τ∈T

IE∗(β(τ)fτ (S)) (3.29)

Thus (3.29) is a necessary condition for the existence of a minimal strategy ϕ. We will show that
it is also sufficient and call the price in (3.29) the rational price of an American contingent claim.

Now consider the problem of the option writer to construct such a strategy ϕ. At time T the
hedging strategy needs to cover fT , i.e. Vϕ(T ) ≥ fT is required (We write short ft for ft(S)). At
time T − 1 the option holder can either exercise and receive fT−1 or hold the option to expiry,
in which case B(T − 1)IE∗(β(T )fT |FT−1) needs to be covered. Thus the hedging strategy of the
writer has to satisfy

Vϕ(T − 1) = max{fT−1, B(T − 1)IE∗(β(T )fT |FT−1)} (3.30)

Using a backwards induction argument we can show that

Vϕ(t− 1) = max{ft−1, B(t− 1)IE∗(β(t)Vϕ(t)|Ft−1)}. (3.31)

Considering only discounted values this leads to

Ṽϕ(t− 1) = max{f̃t−1, IE
∗(Ṽϕ(t)|Ft−1)}. (3.32)

Thus we see that Ṽϕ(t) is the Snell envelope Zt of f̃t.
In particular we know that

Zt = sup
τ∈Tt

IE∗(f̃τ |Ft) (3.33)

and the stopping time τ∗ = min{s ≥ t : Zs = f̃s} is optimal. So

Zt = IE∗(f̃τ∗ |Ft) (3.34)

In case t = 0 we can use τ∗0 = min{s ≥ 0 : Zs = f̃s} and then

x = Z0 = IE∗(f̃τ∗0 ) = sup
τ∈T0

IE∗(f̃τ ) (3.35)
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is the rational option price.
We still need to construct the strategy ϕ. To do this recall that Z is a supermartingale and so

the Doob decomposition yields
Z = M̃ − Ã (3.36)

with a martingale M̃ and a predictable, increasing process Ã. We write Mt = M̃tBt and At =
ÃtBt. Since the market is complete we know that there exists a self-financing strategy ϕ̄ such that

M̃t = Ṽϕ̄(t). (3.37)

Also using (3.36) we find ZtBt = Vϕ̄(t) − At. Now on C = {(t, ω) : 0 ≤ t < τ∗(ω)} we have that
Z is a martingale and thus At(ω) = 0. Thus we obtain from Ṽϕ̄(t) = Zt that

Ṽϕ̄(t) = sup
t≤τ≤T

IE∗(f̃τ |Ft) ∀ (t, ω) ∈ C. (3.38)

Now τ∗ is the smallest exercise time and Ãτ∗(ω) = 0. Thus

Ṽϕ̄(τ∗(ω), ω) = Zτ∗(ω)(ω) = f̃τ∗(ω)(ω) (3.39)

Undoing the discounting we find
Vϕ̄(τ∗) = fτ∗ (3.40)

and therefore φ̄ is a minimal hedge.
Now consider the problem of the option holder, how to find the optimal exercise time. We

observe that the optimal exercise time must be an optimal stopping time, since for any other
stopping time σ (use Proposition 3.6.8)

Ṽϕ(σ) = Zσ > f̃σ (3.41)

and holding the asset longer would generate a larger payoff. Thus the holder needs to wait until
Zσ = f̃σ i.e. (i) of Proposition 3.6.8 is true. On the other hand with ν the largest stopping time
(compare Definition 3.6.3) we see that σ ≤ ν. This follows since using φ̄ after ν with initial capital
from exercising will always yield a higher portfolio value than the strategy of exercising later. To
see this recall that Vϕ̄ = ZtBt + At with At > 0 for t > ν. So we must have σ ≤ ν and since
At = 0 for t ≤ ν we see that Zσ is a martingale. Now criterion (ii) of Proposition 3.6.8 is true and
σ is thus optimal. So

Proposition 3.6.10. A stopping time σ ∈ Tt is an optimal exercise time for the American option
(ft) if and only if

IE∗(β(σ)fσ) = sup
τ∈Tt

IE∗(β(τ)fτ ) (3.42)

3.6.3 American Options in the Cox-Ross-Rubinstein model

We now consider how to evaluate an American put option in a standard CRR model. We assume
that the time interval [0, T ] is divided into N equal subintervals of length ∆ say. Assuming the
risk-free rate of interest r (over [0,T]) as given, we have 1 + ρ = er∆ (where we denote the risk-
free rate of interest in each subinterval by ρ). The remaining degrees of freedom are resolved by
choosing u and d as follows:

1 + u = eσ
√

∆, and 1 + d = (1 + u)−1 = e−σ
√

∆.

By condition (3.9) the risk-neutral probabilities for the corresponding single period models are
given by

p∗ =
ρ− d

u− d
=

er∆ − e−σ
√

∆

eσ
√

∆ − e−σ
√

∆
.
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Thus the stock with initial value S = S(0) is worth S(1 + u)i(1 + d)j after i steps up and j
steps down. Consequently, after N steps, there are N + 1 possible prices, S(1 + u)i(1 + d)N−i

(i = 0, . . . , N). There are 2N possible paths through the tree. It is common to take N of the order
of 30, for two reasons:

(i) typical lengths of time to expiry of options are measured in months (9 months, say); this gives
a time step around the corresponding number of days,
(ii) 230 paths is about the order of magnitude that can be comfortably handled by computers
(recall that 210 = 1, 024, so 230 is somewhat over a billion).

We can now calculate both the value of an American put option and the optimal exercise
strategy by working backwards through the tree (this method of backward recursion in time is a
form of the dynamic programming (DP) technique, due to Richard Bellman, which is important
in many areas of optimisation and Operational Research).

1. Draw a binary tree showing the initial stock value and having the right number, N , of time
intervals.
2. Fill in the stock prices: after one time interval, these are S(1+u) (upper) and S(1+d) (lower);
after two time intervals, S(1 + u)2, S and S(1 + d)2 = S/(1 + u)2; after i time intervals, these are
S(1+u)j(1+ d)i−j = S(1+u)2j−i at the node with j ‘up’ steps and i− j ‘down’ steps (the ‘(i, j)’
node).
3. Using the strike price K and the prices at the terminal nodes, fill in the payoffs fA

N,j =
max{K − S(1 + u)j(1 + d)N−j , 0} from the option at the terminal nodes underneath the terminal
prices.
4. Work back down the tree, from right to left. The no-exercise values fij of the option at the
(i, j) node are given in terms of those of its upper and lower right neighbours in the usual way, as
discounted expected values under the risk-neutral measure:

fij = e−r∆[p∗fA
i+1,j+1 + (1− p∗)fA

i+1,j ].

The intrinsic (or early-exercise) value of the American put at the (i, j) node – the value there if it
is exercised early – is

K − S(1 + u)j(1 + d)i−j

(when this is non-negative, and so has any value). The value of the American put is the higher of
these:

fA
ij = max{fij ,K − S(1 + u)j(1 + d)i−j}

= max
{
e−r∆(p∗fA

i+1,j+1 + (1− p∗)fA
i+1,j),K − S(1 + u)j(1 + d)i−j

}
.

5. The initial value of the option is the value fA
0 filled in at the root of the tree.

6. At each node, it is optimal to exercise early if the early-exercise value there exceeds the value
fij there of expected discounted future payoff.

3.6.4 A Three-period Example

Assume we have two basic securities: a risk-free bond and a risky stock. The one-year risk-free
interest rate (continuously compounded) is r = 0.06 and the volatility of the stock is 20%. We
price calls and puts in three-period Cox-Ross-Rubinstein model. The up and down movements of
the stock price are given by

1 + u = eσ
√

∆ = 1.1224 and 1 + d = (1 + u)−1 = e−σ
√

∆ = 0.8910,

with σ = 0.2 and ∆ = 1/3. We obtain risk-neutral probabilities by (3.9)

p∗ =
er∆ − d

u− d
= 0.5584.
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We assume that the price of the stock at time t = 0 is S(0) = 100. To price a European call option
with maturity one year (N = 3) and strike K = 10) we can either use the valuation formula (3.12)
or work our way backwards through the tree. Prices of the stock and the call are given in Figure
4.2 below. One can implement the simple evaluation formulae for the CRR- and the BS-models

time t = 0

S = 100
c = 11.56 ´

´́

S = 112.24
c = 18.21

Q
QQ S = 89.10

c = 3.67

t = 1

©©©
S = 125.98
c = 27.96

HHH
S = 100
c = 6.70

©©©
HHH S = 79.38

c = 0

t = 2

©©©
HHH

S = 89.10
c = 0

S = 70.72
c = 0

©©©
S = 112.24
c = 12.24

HHH

©©© S = 141.40
c = 41.40

HHH

t = 3

Figure 3.2: Stock and European call prices

and compare the values. Figure 3.3 is for S = 100,K = 90, r = 0.06, σ = 0.2, T = 1.
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Figure 3.3: Approximation of Black-Scholes price by Binomial models

To price a European put, with price process denoted by p(t), and an American put, P (t),
(maturity N = 3, strike 100), we can for the European put either use the put-call parity (1.1), the
risk-neutral pricing formula, or work backwards through the tree. For the prices of the American
put we use the technique outlined in §4.8.1. Prices of the two puts are given in Figure 4.4. We
indicate the early exercise times of the American put in bold type. Recall that the discrete-time
rule is to exercise if the intrinsic value K − S(t) is larger than the value of the corresponding
European put.
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time t = 0
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Figure 3.4: European p(.) and American P (.) put prices



Chapter 4

Continuous-time Financial Market
Models

4.1 The Stock Price Process and its Stochastic Calculus

4.1.1 Continuous-time Stochastic Processes

A stochastic process X = (X(t))t≥0 is a family of random variables defined on (Ω,F , IP, IF ). We
say X is adapted if X(t) ∈ Ft (i.e. X(t) is Ft-measurable) for each t: thus X(t) is known when
Ft is known, at time t.

The martingale property in continuous time is just that suggested by the discrete-time case:

Definition 4.1.1. A stochastic process X = (X(t))0≤t<∞ is a martingale relative to (IF, IP ) if

(i) X is adapted, and IE |X(t)| < ∞ for all ≤ t < ∞;

(ii) IE[X(t)|Fs] = X(s) IP − a.s. (0 ≤ s ≤ t),

and similarly for sub- and supermartingales.

There are regularisation results, under which one can take X(t) RCLL in t (basically t →
IEX(t) has to be right-continuous). Then the analogues of the results for discrete-time martingales
hold true.

Interpretation. Martingales model fair games. Submartingales model favourable games. Su-
permartingales model unfavourable games.

Brownian motion originates in work of the botanist Robert Brown in 1828. It was introduced
into finance by Louis Bachelier in 1900, and developed in physics by Albert Einstein in 1905.

Definition 4.1.2. A stochastic process X = (X(t))t≥0 is a standard (one-dimensional) Brownian
motion, BM or BM(IR), on some probability space (Ω,F , IP ), if

(i) X(0) = 0 a.s.,

(ii) X has independent increments: X(t+u)−X(t) is independent of σ(X(s) : s ≤ t) for u ≥ 0,

(iii) X has stationary increments: the law of X(t + u)−X(t) depends only on u,

(iv) X has Gaussian increments: X(t + u) − X(t) is normally distributed with mean 0 and
variance u, X(t + u)−X(t) ∼ N(0, u),

(v) X has continuous paths: X(t) is a continuous function of t, i.e. t → X(t, ω) is continuous
in t for all ω ∈ Ω.

72
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We shall henceforth denote standard Brownian motion BM(IR) by W = (W (t)) (W for
Wiener), though B = (B(t)) (B for Brown) is also common. Standard Brownian motion BM(IRd)
in d dimensions is defined by W (t) := (W1(t), . . . , Wd(t)), where W1, . . . , Wd are independent stan-
dard Brownian motions in one dimension (independent copies of BM(IR)).

We have Wiener’s theorem:

Theorem 4.1.1 (Wiener). Brownian motion exists.

For further background, see any measure-theoretic text on stochastic processes. A treatment
starting directly from our main reference of measure-theoretic results, Williams (Williams 1991),
is Rogers and Williams (Rogers and Williams 1994), Chapter 1. The classic is Doob’s book,
(Doob 1953), VIII.2. Excellent modern texts include (Karatzas and Shreve 1991, Revuz and
Yor 1991) (see particularly (Karatzas and Shreve 1991), §2.2-4 for construction).

Geometric Brownian Motion

Now that we have both Brownian motion W and Itô’s Lemma to hand, we can introduce the most
important stochastic process for us, a relative of Brownian motion - geometric (or exponential, or
economic) Brownian motion.

Suppose we wish to model the time evolution of a stock price S(t) (as we will, in the Black-
Scholes theory). Consider how S will change in some small time-interval from the present time t
to a time t+dt in the near future. Writing dS(t) for the change S(t+dt)−S(t) in S, the return on
S in this interval is dS(t)/S(t). It is economically reasonable to expect this return to decompose
into two components, a systematic part and a random part. The systematic part could plausibly
be modelled by µdt, where µ is some parameter representing the mean rate of return of the stock.
The random part could plausibly be modelled by σdW (t), where dW (t) represents the noise term
driving the stock price dynamics, and σ is a second parameter describing how much effect this
noise has - how much the stock price fluctuates. Thus σ governs how volatile the price is, and is
called the volatility of the stock. The role of the driving noise term is to represent the random
buffeting effect of the multiplicity of factors at work in the economic environment in which the
stock price is determined by supply and demand.

Putting this together, we have the stochastic differential equation

dS(t) = S(t)(µdt + σdW (t)), S(0) > 0, (4.1)

due to Itô in 1944. This corrects Bachelier’s earlier attempt of 1900 (he did not have the factor
S(t) on the right - missing the interpretation in terms of returns, and leading to negative stock
prices!) Incidentally, Bachelier’s work served as Itô’s motivation in introducing Itô calculus. The
mathematical importance of Itô’s work was recognised early, and led on to the work of (Doob 1953),
(Meyer 1976) and many others (see the memorial volume (Ikeda, Watanabe, M., and Kunita 1996)
in honour of Itô’s eightieth birthday in 1995). The economic importance of geometric Brownian
motion was recognised by Paul A. Samuelson in his work from 1965 on ((Samuelson 1965)), for
which Samuelson received the Nobel Prize in Economics in 1970, and by Robert Merton (see
(Merton 1990) for a full bibliography), in work for which he was similarly honoured in 1997.

4.1.2 Stochastic Analysis

Stochastic integration was introduced by K. Itô in 1944, hence its name Itô calculus. It gives a
meaning to

t∫

0

XdY =

t∫

0

X(s, ω)dY (s, ω),

for suitable stochastic processes X and Y , the integrand and the integrator. We shall confine our
attention here mainly to the basic case with integrator Brownian motion: Y = W . Much greater
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generality is possible: for Y a continuous martingale, see (Karatzas and Shreve 1991) or (Revuz
and Yor 1991); for a systematic general treatment, see (Protter 2004).

The first thing to note is that stochastic integrals with respect to Brownian motion, if they exist,
must be quite different from the measure-theoretic integral. For, the Lebesgue-Stieltjes integrals
described there have as integrators the difference of two monotone (increasing) functions, which
are locally of bounded variation. But we know that Brownian motion is of infinite (unbounded)
variation on every interval. So Lebesgue-Stieltjes and Itô integrals must be fundamentally different.

In view of the above, it is quite surprising that Itô integrals can be defined at all. But if we take
for granted Itô’s fundamental insight that they can be, it is obvious how to begin and clear enough
how to proceed. We begin with the simplest possible integrands X, and extend successively in
much the same way that we extended the measure-theoretic integral.

Indicators.

If X(t, ω) = 1[a,b](t), there is exactly one plausible way to define
∫

XdW :

t∫

0

X(s, ω)dW (s, ω) :=





0 if t ≤ a,
W (t)−W (a) if a ≤ t ≤ b,
W (b)−W (a) if t ≥ b.

Simple Functions.

Extend by linearity: if X is a linear combination of indicators, X =
∑n

i=1 ci1[ai,bi], we should
define

t∫

0

XdW :=
n∑

i=1

ci

t∫

0

1[ai,bi]dW.

Already one wonders how to extend this from constants ci to suitable random variables, and one
seeks to simplify the obvious but clumsy three-line expressions above.

We begin again, this time calling a stochastic process X simple if there is a partition 0 = t0 <
t1 < . . . < tn = T < ∞ and uniformly bounded Ftn-measurable random variables ξk (|ξk| ≤ C for
all k = 0, . . . , n and ω, for some C) and if X(t, ω) can be written in the form

X(t, ω) = ξ0(ω)1{0}(t) +
n∑

i=0

ξi(ω)1(ti,ti+1](t) (0 ≤ t ≤ T, ω ∈ Ω).

Then if tk ≤ t < tk+1,

It(X) :=

t∫

0

XdW =
k−1∑

i=0

ξi(W (ti+1)−W (ti)) + ξk(W (t)−W (tk))

=
n∑

i=0

ξi(W (t ∧ ti+1)−W (t ∧ ti)).

Note that by definition I0(X) = 0 IP −a.s. . We collect some properties of the stochastic integral
defined so far:

Lemma 4.1.1. (i) It(aX + bY ) = aIt(X) + bIt(Y ).
(ii) IE(It(X)|Fs) = Is(X) IP − a.s. (0 ≤ s < t < ∞), hence It(X) is a continuous martingale.

The stochastic integral for simple integrands is essentially a martingale transform, and the
above is essentially the proof that martingale transforms are martingales.
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We pause to note a property of square-integrable martingales which we shall need below.
Call M(t) −M(s) the increment of M over (s, t]. Then for a martingale M , the product of the
increments over disjoint intervals has zero mean. For, if s < t ≤ u < v,

IE [(M(v)−M(u))(M(t)−M(s))]

= IE [IE((M(v)−M(u))(M(t)−M(s))|Fu)]

= IE [(M(t)−M(s))IE((M(v)−M(u))|Fu)] ,

taking out what is known (as s, t ≤ u). The inner expectation is zero by the martingale property,
so the left-hand side is zero, as required.

We now can add further properties of the stochastic integral for simple functions.

Lemma 4.1.2. (i) We have the Itô isometry

IE
(
(It(X))2

)
= IE




t∫

0

X(s)2ds


.

(ii)IE
(
(It(X)− Is(X))2|Fs

)
= IE

(∫ t

s
X(u)2du

)
IP − a.s.

The Itô isometry above suggests that
∫ t

0
XdW should be defined only for processes with

t∫

0

IE
(
X(u)2

)
du < ∞ for all t.

We then can transfer convergence on a suitable L2-space of stochastic processes to a suitable L2-
space of martingales. This gives us an L2-theory of stochastic integration, for which Hilbert-space
methods are available.

For the financial applications we have in mind, there is a fixed time-interval - [0, T ] say - on
which we work (e.g., an option is written at time t = 0, with expiry time t = T ). Then the above
becomes

T∫

0

IE(X(u)2)du < ∞.

Approximation.

We seek a class of integrands suitably approximable by simple integrands. It turns out that:

(i) The suitable class of integrands is the class of (B([0,∞))⊗F)-measurable, (Ft)- adapted pro-
cesses X with

∫ t

0
IE

(
X(u)2

)
du < ∞ for all t > 0.

(ii) Each such X may be approximated by a sequence of simple integrands Xn so that the stochas-
tic integral It(X) =

∫ t

0
XdW may be defined as the limit of It(Xn) =

∫ t

0
XndW .

(iii) The properties from both lemmas above remain true for the stochastic integral
∫ t

0
XdW de-

fined by (i) and (ii).

Example.

We calculate
∫

W (u)dW (u). We start by approximating the integrand by a sequence of simple
functions.

Xn(u) =





W (0) = 0 if 0 ≤ u ≤ t/n,
W (t/n) if t/n < u ≤ 2t/n,
...

...
W

(
(n−1)t

n

)
if (n− 1)t/n < u ≤ t.
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By definition,

t∫

0

W (u)dW (u) = lim
n→∞

n−1∑

k=0

W

(
kt

n

)(
W

(
(k + 1)t

n

)
−W

(
kt

n

))
.

Rearranging terms, we obtain for the sum on the right

n−1∑

k=0

W

(
kt

n

) (
W

(
(k + 1)t

n

)
−W

(
kt

n

))

=
1
2
W (t)2 − 1

2

[
n−1∑

k=0

(
W

(
(k + 1)t

n

)
−W

(
kt

n

))2
]
.

Since the second term approximates the quadratic variation of W and hence tends to t for n →∞,
we find

t∫

0

W (u)dW (u) =
1
2
W (t)2 − 1

2
t. (4.2)

Note the contrast with ordinary (Newton-Leibniz) calculus! Itô calculus requires the second term
on the right – the Itô correction term – which arises from the quadratic variation of W .

One can construct a closely analogous theory for stochastic integrals with the Brownian inte-
grator W above replaced by a square-integrable martingale integrator M . The properties above
hold, with (i) in Lemma replaced by

IE







t∫

0

X(u)dM(u)




2

 = IE




t∫

0

X(u)2d〈M〉(u)


.

Quadratic Variation, Quadratic Covariation.

We shall need to extend quadratic variation and quadratic covariation to stochastic integrals. The
quadratic variation of It(X) =

∫ t

0
X(u)dW (u) is

∫ t

0
X(u)2du. This is proved in the same way as the

case X ≡ 1, that W has quadratic variation process t. More generally, if Z(t) =
∫ t

0
X(u)dM(u)

for a continuous martingale integrator M , then 〈Z〉 (t) =
∫ t

0
X2(u)d 〈M〉 (u). Similarly (or by

polarisation), if Zi(t) =
∫ t

0
Xi(u)dMi(u) (i = 1, 2), 〈Z1, Z2〉 (t) =

∫ t

0
X1(u)X2(u)d 〈M1,M2〉 (u).

4.1.3 Itô’s Lemma

Suppose that b is adapted and locally integrable (so
∫ t

0
b(s)ds is defined as an ordinary integral),

and σ is adapted and measurable with
∫ t

0
IE

(
σ(u)2

)
du < ∞ for all t (so

∫ t

0
σ(s)dW (s) is defined

as a stochastic integral). Then

X(t) := x0 +

t∫

0

b(s)ds +

t∫

0

σ(s)dW (s)

defines a stochastic process X with X(0) = x0. It is customary, and convenient, to express such
an equation symbolically in differential form, in terms of the stochastic differential equation

dX(t) = b(t)dt + σ(t)dW (t), X(0) = x0. (4.3)
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Now suppose f : IR → IR is of class C2. The question arises of giving a meaning to the stochastic
differential df(X(t)) of the process f(X(t)), and finding it. Given a partition P of [0, t], i.e.
0 = t0 < t1 < . . . < tn = t, we can use Taylor’s formula to obtain

f(X(t))− f(X(0)) =
n−1∑

k=0

f(X(tk+1))− f(X(tk))

=
n−1∑

k=0

f ′(X(tk))∆X(tk)

+
1
2

n−1∑

k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))2

with 0 < θk < 1. We know that
∑

(∆X(tk))2 → 〈X〉 (t) in probability (so, taking a subsequence,
with probability one), and with a little more effort one can prove

n−1∑

k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))2 →
t∫

0

f ′′(X(u))d 〈X〉 (u).

The first sum is easily recognized as an approximating sequence of a stochastic integral; indeed,
we find

n−1∑

k=0

f ′(X(tk))∆X(tk) →
t∫

0

f ′(X(u))dX(u).

So we have

Theorem 4.1.2 (Basic Itô formula). If X has stochastic differential given by 4.3 and f ∈ C2,
then f(X) has stochastic differential

df(X(t)) = f ′(X(t))dX(t) +
1
2
f ′′(X(t))d 〈X〉 (t),

or writing out the integrals,

f(X(t)) = f(x0) +

t∫

0

f ′(X(u))dX(u) +
1
2

t∫

0

f ′′(X(u))d 〈X〉 (u).

More generally, suppose that f : IR2 → IR is a function, continuously differentiable once in
its first argument (which will denote time), and twice in its second argument (space): f ∈ C1,2.
By the Taylor expansion of a smooth function of several variables we get for t close to t0 (we use
subscripts to denote partial derivatives: ft := ∂f/∂t, ftx := ∂2f/∂t∂x):

f(t,X(t)) = f(t0, X(t0))

+(t− t0)ft(t0, X(t0)) + (X(t)−X(t0))fx(t0, X(t0))

+
1
2
(t− t0)2ftt(t0, X(t0)) +

1
2
(X(t)−X(t0))2fxx(t0, X(t0))

+(t− t0)(X(t)−X(t0))ftx(t0, X(t0)) + . . . ,

which may be written symbolically as

df = ftdt + fxdX +
1
2
ftt(dt)2 + ftxdtdX +

1
2
fxx(dX)2 + . . . .
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In this, we substitute dX(t) = b(t)dt + σ(t)dW (t) from above, to obtain

df = ftdt + fx(bdt + σdW )

+
1
2
ftt(dt)2 + ftxdt(bdt + σdW ) +

1
2
fxx(bdt + σdW )2 + . . .

Now using the formal multiplication rules dt · dt = 0, dt · dW = 0, dW · dW = dt (which are just
shorthand for the corresponding properties of the quadratic variations, we expand

(bdt + σdW )2 = σ2dt + 2bσdtdW + b2(dt)2 = σ2dt + higher-order terms

to get finally

df =
(

ft + bfx +
1
2
σ2fxx

)
dt + σfxdW + higher-order terms.

As above the higher-order terms are irrelevant, and summarising, we obtain Itô’s lemma, the
analogue for the Itô or stochastic calculus of the chain rule for ordinary (Newton-Leibniz) calculus:

Theorem 4.1.3 (Itô’s Lemma). If X(t) has stochastic differential given by 4.3, then f =
f(t,X(t)) has stochastic differential

df =
(

ft + bfx +
1
2
σ2fxx

)
dt + σfxdW.

That is, writing f0 for f(0, x0), the initial value of f ,

f = f0 +

t∫

0

(ft + bfx +
1
2
σ2fxx)dt +

t∫

0

σfxdW.

We will make good use of:

Corollary 4.1.1. IE (f(t,X(t))) = f0 +
∫ t

0
IE

(
ft + bfx + 1

2σ2fxx

)
dt.

Proof.
∫ t

0
σf2dW is a stochastic integral, so a martingale, so its expectation is constant (= 0,

as it starts at 0).
The differential equation (4.1) above has the unique solution

S(t) = S(0) exp
{(

µ− 1
2
σ2

)
t + σdW (t)

}
.

For, writing

f(t, x) := exp
{(

µ− 1
2
σ2

)
t + σx

}
,

we have

ft =
(

µ− 1
2
σ2

)
f, fx = σf, fxx = σ2f,

and with x = W (t), one has
dx = dW (t), (dx)2 = dt.

Thus Itô’s lemma gives

df(t,W (t)) = ftdt + fxdW (t) +
1
2
fxx(dW (t))2

= f

((
µ− 1

2
σ2

)
dt + σdW (t) +

1
2
σ2dt

)

= f(µdt + σdW (t)),

so f(t,W (t)) is a solution of the stochastic differential equation, and the initial condition f(0, W (0)) =
S(0) as W (0) = 0, giving existence.
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4.1.4 Girsanov’s Theorem

Consider first independent N(0, 1) random variables Z1, . . . , Zn on a probability space (Ω,F , IP ).
Given a vector γ = (γ1, . . . , γn), consider a new probability measure ĨP on (Ω,F) defined by

ĨP (dω) = exp

{
n∑

i=1

γiZi(ω)− 1
2

n∑

i=1

γ2
i

}
IP (dω).

As exp{.} > 0 and integrates to 1, as
∫

exp{γiZi}dIP = exp{ 1
2γ2

i }, this is a probability measure.
It is also equivalent to IP (has the same null sets), again as the exponential term is positive. Also

ĨP (Zi ∈ dzi, i = 1, . . . , n)

= exp

{
n∑

i=1

γiZi − 1
2

n∑

i=1

γ2
i

}
IP (Zi ∈ dzi, i = 1, . . . , n)

= (2π)−
n
2 exp

{
n∑

i=1

γizi − 1
2

n∑

i=1

γ2
i −

1
2

n∑

i=1

z2
i

}
n∏

i=1

dzi

= (2π)−
n
2 exp

{
−1

2

n∑

i=1

(zi − γi)2
}

dz1 . . . dzn.

This says that if the Zi are independent N(0, 1) under IP , they are independent N(γi, 1) under ĨP .
Thus the effect of the change of measure IP → ĨP , from the original measure IP to the equivalent
measure ĨP , is to change the mean, from 0 = (0, . . . , 0) to γ = (γ1, . . . , γn).

This result extends to infinitely many dimensions - i.e., from random vectors to stochas-
tic processes, indeed with random rather than deterministic means. Let W = (W1, . . . Wd)
be a d-dimensional Brownian motion defined on a filtered probability space (Ω,F , IP, IF ) with
the filtration IF satisfying the usual conditions. Let (γ(t) : 0 ≤ t ≤ T ) be a measurable,
adapted d-dimensional process with

∫ T

0
γi(t)2dt < ∞ a.s., i = 1, . . . , d, and define the pro-

cess (L(t) : 0 ≤ t ≤ T ) by

L(t) = exp



−

t∫

0

γ(s)′dW (s)− 1
2

t∫

0

‖γ(s)‖2 ds



. (4.4)

Then L is continuous, and, being the stochastic exponential of − ∫ t

0
γ(s)′dW (s), is a local martin-

gale. Given sufficient integrability on the process γ, L will in fact be a (continuous) martingale.
For this, Novikov’s condition suffices:

IE


exp





1
2

T∫

0

‖γ(s)‖2 ds






 < ∞. (4.5)

We are now in the position to state a version of Girsanov’s theorem, which will be one of our
main tools in studying continuous-time financial market models.

Theorem 4.1.4 (Girsanov). Let γ be as above and satisfy Novikov’s condition; let L be the
corresponding continuous martingale. Define the processes W̃i, i = 1, . . . , d by

W̃i(t) := Wi(t) +

t∫

0

γi(s)ds, (0 ≤ t ≤ T ), i = 1, . . . , d.

Then under the equivalent probability measure ĨP (defined on (Ω,FT )) with Radon-Nikodým deriva-
tive

dĨP

dIP
= L(T ),
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the process W̃ = (W̃1, . . . , W̃d) is d-dimensional Brownian motion.

In particular, for γ(t) constant (= γ), change of measure by introducing the Radon-Nikodým
derivative exp

{−γW (t)− 1
2γ2t

}
corresponds to a change of drift from c to c− γ. If IF = (Ft) is

the Brownian filtration (basically Ft = σ(W (s), 0 ≤ s ≤ t) slightly enlarged to satisfy the usual
conditions) any pair of equivalent probability measures QQ ∼ IP on F = FT is a Girsanov pair, i.e.

dQ̃Q

dIP

∣∣∣∣∣
Ft

= L(t)

with L defined as above. Girsanov’s theorem (or the Cameron-Martin-Girsanov theorem) is for-
mulated in varying degrees of generality, discussed and proved, e.g. in (Karatzas and Shreve 1991),
§3.5, (Protter 2004), III.6, (Revuz and Yor 1991), VIII, (Dothan 1990), §5.4 (discrete time), §11.6
(continuous time).

4.2 Financial Market Models

4.2.1 The Financial Market Model

We start with a general model of a frictionless (compare Chapter 1) security market where investors
are allowed to trade continuously up to some fixed finite planning horizon T . Uncertainty in the
financial market is modelled by a probability space (Ω,F , IP ) and a filtration IF = (Ft)0≤t≤T

satisfying the usual conditions of right-continuity and completeness. We assume that the σ-field
F0 is trivial, i.e. for every A ∈ F0 either IP (A) = 0 or IP (A) = 1, and that FT = F .

There are d + 1 primary traded assets, whose price processes are given by stochastic processes
S0, . . . , Sd. We assume that the processes S0, . . . , Sd represent the prices of some traded assets
(stocks, bonds, or options).

We have not emphasised so far that there was an implicit numéraire behind the prices S0, . . . , Sd;
it is the numéraire relevant for domestic transactions at time t. The formal definition of a numéraire
is very much as in the discrete setting.

Definition 4.2.1. A numéraire is a price process X(t) almost surely strictly positive for each
t ∈ [0, T ].

We assume now that S0(t) is a non-dividend paying asset, which is (almost surely) strictly
positive and use S0 as numéraire. ‘Historically’ (see (Harrison and Pliska 1981)) the money
market account B(t), given by B(t) = er(t) with a positive deterministic process r(t) and r(0) = 0,
was used as a numéraire, and the reader may think of S0(t) as being B(t).

Our principal task will be the pricing and hedging of contingent claims, which we model as
FT -measurable random variables. This implies that the contingent claims specify a stochastic
cash-flow at time T and that they may depend on the whole path of the underlying in [0, T ]
- because FT contains all that information. We will often have to impose further integrability
conditions on the contingent claims under consideration. The fundamental concept in (arbitrage)
pricing and hedging contingent claims is the interplay of self-financing replicating portfolios and
risk-neutral probabilities. Although the current setting is on a much higher level of sophistication,
the key ideas remain the same.

We call an IRd+1-valued predictable process

ϕ(t) = (ϕ0(t), . . . , ϕd(t)), t ∈ [0, T ]

with
∫ T

0
IE(ϕ0(t))dt < ∞,

∑d
i=0

∫ T

0
IE(ϕ2

i (t))dt < ∞ a trading strategy (or dynamic portfolio
process). Here ϕi(t) denotes the number of shares of asset i held in the portfolio at time t - to
be determined on the basis of information available before time t; i.e. the investor selects his time
t portfolio after observing the prices S(t−). The components ϕi(t) may assume negative as well
as positive values, reflecting the fact that we allow short sales and assume that the assets are
perfectly divisible.
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Definition 4.2.2. (i) The value of the portfolio ϕ at time t is given by the scalar product

Vϕ(t) := ϕ(t) · S(t) =
d∑

i=0

ϕi(t)Si(t), t ∈ [0, T ].

The process Vϕ(t) is called the value process, or wealth process, of the trading strategy ϕ.
(ii) The gains process Gϕ(t) is defined by

Gϕ(t) :=

t∫

0

ϕ(u)dS(u) =
d∑

i=0

t∫

0

ϕi(u)dSi(u).

(iii) A trading strategy ϕ is called self-financing if the wealth process Vϕ(t) satisfies

Vϕ(t) = Vϕ(0) + Gϕ(t) for all t ∈ [0, T ].

Remark 4.2.1. (i) The financial implications of the above equations are that all changes in the
wealth of the portfolio are due to capital gains, as opposed to withdrawals of cash or injections of
new funds.
(ii) The definition of a trading strategy includes regularity assumptions in order to ensure the
existence of stochastic integrals.

Using the special numéraire S0(t) we consider the discounted price process

S̃(t) :=
S(t)
S0(t)

= (1, S̃1(t), . . . S̃d(t))

with S̃i(t) = Si(t)/S0(t), i = 1, 2, . . . , d. Furthermore, the discounted wealth process Ṽϕ(t) is
given by

Ṽϕ(t) :=
Vϕ(t)
S0(t)

= ϕ0(t) +
d∑

i=1

ϕi(t)S̃i(t)

and the discounted gains process G̃ϕ(t) is

G̃ϕ(t) :=
d∑

i=1

t∫

0

ϕi(t)dS̃i(t).

Observe that G̃ϕ(t) does not depend on the numéraire component ϕ0.
It is convenient to reformulate the self-financing condition in terms of the discounted processes:

Proposition 4.2.1. Let ϕ be a trading strategy. Then ϕ if self-financing if and only if

Ṽϕ(t) = Ṽϕ(0) + G̃ϕ(t).

Of course, Vϕ(t) ≥ 0 if and only if Ṽϕ(t) ≥ 0.

The proof follows by the numéraire invariance theorem using S0 as numéraire.

Remark 4.2.2. The above result shows that a self-financing strategy is completely determined by
its initial value and the components ϕ1, . . . , ϕd. In other words, any set of predictable processes
ϕ1, . . . , ϕd such that the stochastic integrals

∫
ϕidS̃i, i = 1, . . . , d exist can be uniquely extended to

a self-financing strategy ϕ with specified initial value Ṽϕ(0) = v by setting the cash holding as

ϕ0(t) = v +
d∑

i=1

t∫

0

ϕi(u)dS̃i(u)−
d∑

i=1

ϕi(t)S̃i(t), t ∈ [0, T ].
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4.2.2 Equivalent Martingale Measures

We develop a relative pricing theory for contingent claims. Again the underlying concept is the
link between the no-arbitrage condition and certain probability measures. We begin with:

Definition 4.2.3. A self-financing trading strategy ϕ is called an arbitrage opportunity if the
wealth process Vϕ satisfies the following set of conditions:

Vϕ(0) = 0, IP (Vϕ(T ) ≥ 0) = 1, and IP (Vϕ(T ) > 0) > 0.

Arbitrage opportunities represent the limitless creation of wealth through risk-free profit and
thus should not be present in a well-functioning market.

The main tool in investigating arbitrage opportunities is the concept of equivalent martingale
measures:

Definition 4.2.4. We say that a probability measure QQ defined on (Ω,F) is an equivalent mar-
tingale measure if:

(i) QQ is equivalent to IP ,
(ii) the discounted price process S̃ is a QQ martingale.

We denote the set of martingale measures by P.

A useful criterion in determining whether a given equivalent measure is indeed a martingale
measure is the observation that the growth rates relative to the numéraire of all given primary
assets under the measure in question must coincide. For example, in the case S0(t) = B(t) we
have:

Lemma 4.2.1. Assume S0(t) = B(t) = er(t), then QQ ∼ IP is a martingale measure if and only if
every asset price process Si has price dynamics under QQ of the form

dSi(t) = r(t)Si(t)dt + dMi(t),

where Mi is a QQ-martingale.

The proof is an application of Itô’s formula.
In order to proceed we have to impose further restrictions on the set of trading strategies.

Definition 4.2.5. A self-financing trading strategy ϕ is called tame (relative to the numéraire S0)
if

Ṽϕ(t) ≥ 0 for all t ∈ [0, T ].

We use the notation Φ for the set of tame trading strategies.

We next analyse the value process under equivalent martingale measures for such strategies.

Proposition 4.2.2. For ϕ ∈ Φ Ṽϕ(t) is a martingale under each QQ ∈ P.

This observation is the key to our first central result:

Theorem 4.2.1. Assume P 6= ∅. Then the market model contains no arbitrage opportunities in
Φ.

Proof. For any ϕ ∈ Φ and under any QQ ∈ P Ṽϕ(t) is a martingale. That is,

IEQQ

(
Ṽϕ(t)|Fu

)
= Ṽϕ(u), for all u ≤ t ≤ T.

For ϕ ∈ Φ to be an arbitrage opportunity we must have Ṽϕ(0) = Vϕ(0) = 0. Now

IEQQ

(
Ṽϕ(t)

)
= 0, for all 0 ≤ t ≤ T.
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Now ϕ is tame, so Ṽϕ(t) ≥ 0, 0 ≤ t ≤ T , implying IEQQ

(
Ṽϕ(t)

)
= 0, 0 ≤ t ≤ T , and in particular

IEQQ

(
Ṽϕ(T )

)
= 0. But an arbitrage opportunity ϕ also has to satisfy IP (Vϕ(T ) ≥ 0) = 1, and

since QQ ∼ IP , this means QQ (Vϕ(T ) ≥ 0) = 1. Both together yield

QQ (Vϕ(T ) > 0) = IP (Vϕ(T ) > 0) = 0,

and hence the result follows.

4.2.3 Risk-neutral Pricing

We now assume that there exists an equivalent martingale measure IP ∗ which implies that there
are no arbitrage opportunities with respect to Φ in the financial market model. Until further notice
we use IP ∗ as our reference measure, and when using the term martingale we always assume that
the underlying probability measure is IP ∗. In particular, we restrict our attention to contingent
claims X such that X/S0(T ) ∈ L1(F , IP ∗).

We now define a further subclass of trading strategies:

Definition 4.2.6. A self-financing trading strategy ϕ is called (IP ∗-) admissible if the relative
gains process

G̃ϕ(t) =

t∫

0

ϕ(u)dS̃(u)

is a (IP ∗-) martingale. The class of all (IP ∗-) admissible trading strategies is denoted Φ(IP ∗).

By definition S̃ is a martingale, and G̃ is the stochastic integral with respect to S̃. We see that
any sufficiently integrable processes ϕ1, . . . , ϕd give rise to IP ∗-admissible trading strategies.

We can repeat the above argument to obtain

Theorem 4.2.2. The financial market model M contains no arbitrage opportunities in Φ(IP ∗).

Under the assumption that no arbitrage opportunities exist, the question of pricing and hedg-
ing a contingent claim reduces to the existence of replicating self-financing trading strategies.
Formally:

Definition 4.2.7. (i) A contingent claim X is called attainable if there exists at least one admis-
sible trading strategy such that

Vϕ(T ) = X.

We call such a trading strategy ϕ a replicating strategy for X.
(ii) The financial market model M is said to be complete if any contingent claim is attainable.

Again we emphasise that this depends on the class of trading strategies. On the other hand,
it does not depend on the numéraire: it is an easy exercise in the continuous asset-price process
case to show that if a contingent claim is attainable in a given numéraire it is also attainable in
any other numéraire and the replicating strategies are the same.

If a contingent claim X is attainable, X can be replicated by a portfolio ϕ ∈ Φ(IP ∗). This
means that holding the portfolio and holding the contingent claim are equivalent from a financial
point of view. In the absence of arbitrage the (arbitrage) price process ΠX(t) of the contingent
claim must therefore satisfy

ΠX(t) = Vϕ(t).

Of course the questions arise of what will happen if X can be replicated by more than one portfolio,
and what the relation of the price process to the equivalent martingale measure(s) is. The following
central theorem is the key to answering these questions:
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Theorem 4.2.3 (Risk-Neutral Valuation Formula). The arbitrage price process of any at-
tainable claim is given by the risk-neutral valuation formula

ΠX(t) = S0(t)IEIP∗

[
X

S0(T )

∣∣∣∣Ft

]
. (4.6)

The uniqueness question is immediate from the above theorem:

Corollary 4.2.1. For any two replicating portfolios ϕ,ψ ∈ Φ(IP ∗) we have

Vϕ(t) = Vψ(t).

Proof of Theorem 4.2.3 Since X is attainable, there exists a replicating strategy ϕ ∈ Φ(IP ∗)
such that Vϕ(T ) = X and ΠX(t) = Vϕ(t). Since ϕ ∈ Φ(IP ∗) the discounted value process Ṽϕ(t) is
a martingale, and hence

ΠX(t) = Vϕ(t) = S0(t)Ṽϕ(t)

= S0(t)IEIP∗
[
Ṽϕ(T )

∣∣∣Ft

]
= S0(t)IEIP∗

[
Vϕ(T )
S0(T )

∣∣∣∣Ft

]

= S0(t)IEIP∗

[
X

S0(T )

∣∣∣∣Ft

]
.

4.2.4 The Black-Scholes Model

The Model

We concentrate on the classical Black-Scholes model

dB(t) = rB(t)dt, B(0) = 1,
dS(t) = S(t) (bdt + σdW (t)), S(0) = p ∈ (0,∞),

with constant coefficients b ∈ IR, r, σ ∈ IR+. We write as usual S̃(t) = S(t)/B(t) for the discounted
stock price process (with the bank account being the natural numéraire), and get from Itô’s formula

dS̃(t) = S̃(t) {(b− r)dt + σdW (t)}.

Equivalent Martingale Measure

Because we use the Brownian filtration any pair of equivalent probability measures IP ∼ QQ on FT

is a Girsanov pair, i.e.
dQQ

dIP

∣∣∣∣
Ft

= L(t)

with

L(t) = exp



−

t∫

0

γ(s)dW (s)− 1
2

t∫

0

γ(s)2ds



,

and (γ(t) : 0 ≤ t ≤ T ) a measurable, adapted d-dimensional process with
∫ T

0
γ(t)2dt < ∞ a.s..

By Girsanov’s theorem 4.1.4 we have

dW (t) = dW̃ (t)− γ(t)dt,

where W̃ is a QQ-Wiener process. Thus the QQ-dynamics for S̃ are

dS̃(t) = S̃(t)
{

(b− r − σγ(t))dt + σdW̃ (t)
}

.
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Since S̃ has to be a martingale under QQ we must have

b− r − σγ(t) = 0 t ∈ [0, T ],

and so we must choose
γ(t) ≡ γ =

b− r

σ
,

(the ’market price of risk’). Indeed, this argument leads to a unique martingale measure, and we
will make use of this fact later on. Using the product rule, we find the QQ-dynamics of S as

dS(t) = S(t)
{

rdt + σdW̃
}

.

We see that the appreciation rate b is replaced by the interest rate r, hence the terminology
risk-neutral (or yield-equating) martingale measure.

We also know that we have a unique martingale measure IP ∗ (recall γ = (b−r)/σ in Girsanov’s
transformation).

Pricing and Hedging Contingent Claims

Recall that a contingent claim X is a FT -measurable random variable such that X/B(T ) ∈
L1(Ω,FT , IP ∗). (We write IE∗ for IEIP∗ in this section.) By the risk-neutral valuation princi-
ple the price of a contingent claim X is given by

ΠX(t) = e{−r(T−t)}IE∗ [X| Ft],

with IE∗ given via the Girsanov density

L(t) = exp

{
−

(
b− r

σ

)
W (t)− 1

2

(
b− r

σ

)2

t

}
.

Now consider a European call with strike K and maturity T on the stock S (so Φ(T ) = (S(T )−
K)+), we can evaluate the above expected value (which is easier than solving the Black-Scholes
partial differential equation) and obtain:

Proposition 4.2.3 (Black-Scholes Formula). The Black-Scholes price
process of a European call is given by

C(t) = S(t)N(d1(S(t), T − t))−Ke−r(T−t)N(d2(S(t), T − t)). (4.7)

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√

t
,

d2(s, t) = d1(s, t)− σ
√

t =
log(s/K) + (r − σ2

2 )t
σ
√

t

Observe that we have already deduced this formula as a limit of a discrete-time setting.
To obtain a replicating portfolio we start in the discounted setting. We have from the risk-

neutral valuation principle

M(t) = exp {−rT} IE∗ [Φ(S(T ))| Ft] .

Now we use Itô’s lemma to find the dynamics of the IP ∗-martingale M(t) = G(t, S(t)):

dM(t) = σS(t)Gs(t, S(t))dW̃ (t).
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Using this representation, we get for the stock component of the replicating portfolio

h(t) = σS(t)Gs(t, S(t)).

Now for the discounted assets the stock component is

ϕ1(t) = Gs(t, S(t))B(t),

and using the self-financing condition the cash component is

ϕ0(t) = G(t, S(t))−Gs(t, S(t))S(t).

To transfer this portfolio to undiscounted values we multiply it by the discount factor, i.e F (t, S(t))-
= B(t)G(t, S(t)) and get:

Proposition 4.2.4. The replicating strategy in the classical Black-Scholes model is given by

ϕ0 =
F (t, S(t))− Fs(t, S(t))S(t)

B(t)
,

ϕ1 = Fs(t, S(t)).

We can also use an arbitrage approach to derive the Black-Scholes formula. For this consider
a self-financing portfolio which has dynamics

dVϕ(t) = ϕ0(t)dB(t) + ϕ1(t)dS(t) = (ϕ0(t)rB(t) + ϕ1(t)µS(t))dt + ϕ1(t)σS(t)dW (t).

Assume that the portfolio value can be written as

Vϕ(t) = V (t) = f(t, S(t))

for a suitable function f ∈ C1,2. Then by Itô’s formula

dV (t) = (ft(t, St) + fx(t, St)Stµ +
1
2
S2

t σ2fxx(t, St))dt + fx(t, St)σStdWt.

Now we match the coefficients and find

ϕ1(t) = fx(t, St)

and
ϕ0(t) =

1
rB(t)

(ft(t, St) +
1
2
σ2S2

t fxx(t, St)).

Then looking at the total portfolio value we find that f(t, x) must satisfy the following PDE

ft(t, x) + rxfx(t, x) +
1
2
σ2x2fxx(t, x)− rf(t, x) = 0 (4.8)

and initial condition f(T, x) = (x−K)+.
In their original paper Black and Scholes (1973), Black and Scholes used an arbitrage pricing

approach (rather than our risk-neutral valuation approach) to deduce the price of a European
call as the solution of a partial differential equation (we call this the PDE approach). The idea
is as follows: start by assuming that the option price C(t) is given by C(t) = f(t, S(t)) for some
sufficiently smooth function f : IR+ × [0, T ] → IR. By Itô’s formula (Theorem 4.1.3) we find for
the dynamics of the option price process (observe that we work under IP so dS = S(bdt + σdW ))

dC =
{

ft(t, S) + fs(t, S)Sb +
1
2
fss(t, S)S2σ2

}
dt + fsSσdW. (4.9)
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Consider a portfolio ψ consisting of a short position in ψ1(t) = fs(t, S(t)) stocks and a long position
in ψ2(t) = 1 call and assume the portfolio is self-financing. Then its value process is

Vψ(t) = −ψ1(t)S(t) + C(t),

and by the self-financing condition we have (to ease the notation we omit the arguments)

dVψ = −ψ1dS + dC

= −fs(Sbdt + SσdW ) +
(

ft + fsSb +
1
2
fssS

2σ2

)
dt + fsSσdW

=
(

ft +
1
2
fssS

2σ2

)
dt.

So the dynamics of the value process of the portfolio do not have any exposure to the driving
Brownian motion, and its appreciation rate in an arbitrage-free world must therefore equal the
risk-free rate, i.e.

dVψ(t) = rVψ(t)dt = (−rfsS + rC) dt.

Comparing the coefficients and using C(t) = f(t, S(t)), we must have

−rSfs + rf = ft +
1
2
σ2S2fss.

This leads again to the Black-Scholes partial differential equation (4.8) for f , i.e.

ft + rsfs +
1
2
σ2s2fss − rf = 0.

Since C(T ) = (S(T )−K)+ we need to impose the terminal condition f(s, T ) = (s−K)+ for all
s ∈ IR+.

Note.

One point in the justification of the above argument is missing: we have to show that the trading
strategy short ψ1 stocks and long one call is self-financing. In fact, this is not true, since ψ1 =
ψ1(t, S(t)) is dependent on the stock price process. Formally, for the self-financing condition to
be true we must have

dVψ(t) = d(ψ1(t)S(t)) + dC(t) = ψ1(t)dS(t) + dC(t).

Now ψ(t) = ψ(t, S(t)) depends on the stock price and so we have

d(ψ1(t, S(t))S(t)) = ψ1(t)dS(t) + S(t)dψ1(t, S(t)) + d 〈ψ1, S〉 (t).

We see that the portfolio ψ is self-financing, if

S(t)dψ1(t, S(t)) + d 〈ψ1, S〉 (t) = 0.

It is an exercise in Itô calculus to show that this is not the case.

4.2.5 The Greeks

We will now analyse the impact of the underlying parameters in the standard Black-Scholes model
on the prices of call and put options. The Black-Scholes option values depend on the (current) stock
price, the volatility, the time to maturity, the interest rate and the strike price. The sensitivities
of the option price with respect to the first four parameters are called the Greeks and are widely
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used for hedging purposes. We can determine the impact of these parameters by taking partial
derivatives. Recall the Black-Scholes formula for a European call (4.7):

C(0) = C(S, T, K, r, σ) = SN(d1(S, T ))−Ke−rT N(d2(S, T )),

with the functions d1(s, t) and d2(s, t) given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√

t
,

d2(s, t) = d1(s, t)− σ
√

t =
log(s/K) + (r − σ2

2 )t
σ
√

t
.

One obtains
∆ :=

∂C

∂S
= N(d1) > 0,

V :=
∂C

∂σ
= S

√
Tn(d1) > 0,

Θ :=
∂C

∂T
=

Sσ

2
√

T
n(d1) + Kre−rT N(d2) > 0,

ρ :=
∂C

∂r
= TKe−rT N(d2) > 0,

Γ :=
∂2C

∂S2
=

n(d1)
Sσ
√

T
> 0.

(As usual N is the cumulative normal distribution function and n is its density.) From the
definitions it is clear that ∆ – delta – measures the change in the value of the option compared
with the change in the value of the underlying asset, V – vega – measures the change of the
option compared with the change in the volatility of the underlying, and similar statements hold
for Θ – theta – and ρ – rho (observe that these derivatives are in line with our arbitrage-based
considerations in §1.3). Furthermore, ∆ gives the number of shares in the replication portfolio for
a call option (see Proposition 4.2.4), so Γ measures the sensitivity of our portfolio to the change
in the stock price.

The Black-Scholes partial differential equation (4.8) can be used to obtain the relation between
the Greeks, i.e. (observe that Θ is the derivative of C, the price of a European call, with respect
to the time to expiry T − t, while in the Black-Scholes PDE the partial derivative with respect to
the current time t appears)

rC =
1
2
s2σ2Γ + rs∆−Θ.

Let us now compute the dynamics of the call option’s price C(t) under the risk-neutral martingale
measure IP ∗. Using formula (4.9) we find

dC(t) = rC(t)dt + σN(d1(S(t), T − t))S(t)dW̃ (t).

Defining the elasticity coefficient of the option’s price as

ηc(t) =
∆(S(t), T − t)S(t)

C(t)
=

N(d1(S(t), T − t))
C(t)

we can rewrite the dynamics as

dC(t) = rC(t)dt + σηc(t)C(t)dW̃ (t).

So, as expected in the risk-neutral world, the appreciation rate of the call option equals the risk-
free rate r. The volatility coefficient is σηc, and hence stochastic. It is precisely this feature that
causes difficulties when assessing the impact of options in a portfolio.
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4.2.6 Barrier Options

The question of whether or not a particular stock will attain a particular level within a specified
period has long been an important one for risk managers. From at least 1967 – predating both
CBOE and Black-Scholes in 1973 – practitioners have sought to reduce their exposure to specific
risks of this kind by buying options designed with such barrier-crossing events in mind. As usual,
the motivation is that buying specific options – that is, taking out specific insurance – is a cheaper
way of covering oneself against a specific danger than buying a more general one.

One-barrier options specify a stock-price level, H say, such that the option pays (‘knocks in’)
or not (‘knocks out’) according to whether or not level H is attained, from below (‘up’) or above
(‘down’). There are thus four possibilities: ‘up and in’, ‘up and out’, ‘down and in’ and ‘down
and out’. Since barrier options are path-dependent (they involve the behaviour of the path, rather
than just the current price or price at expiry), they may be classified as exotic; alternatively,
the four basic one-barrier types above may be regarded as ‘vanilla barrier’ options, with their
more complicated variants, described below, as ‘exotic barrier’ options. Note that holding both a
knock-in option and the corresponding knock-out is equivalent to the corresponding vanilla option
with the barrier removed. The sum of the prices of the knock-in and the knock-out is thus the
price of the vanilla – again showing the attractiveness of barrier options as being cheaper than
their vanilla counterparts.

A barrier option is often designed to pay a rebate – a sum specified in advance – to compensate
the holder if the option is rendered otherwise worthless by hitting/not hitting the barrier. We
restrict attention to zero rebate here for simplicity.

Consider, to be specific, a down-and-out call option with strike K and barrier H (the other
possibilities may be handled similarly). The payoff is (unless otherwise stated min and max are
over [0, T ])

(S(T )−K)+1{min S(.)≥H} = (S(T )−K)1{S(T )≥K,min S(.)≥H},

so by risk-neutral pricing the value of the option is

DOCK,H := IE
[
e−rT (S(T )−K)1{S(T )≥K,min S(.)≥H}

]
,

where S is geometric Brownian motion, S(t) = p0 exp{(µ− 1
2σ2t)+σW (t)}. Write c := µ− 1

2σ2/σ;
then min S(.) ≥ H iff min(ct+W (t)) ≥ σ−1 log(H/p0). Writing X for X(t) := ct+W (t) – drifting
Brownian motion with drift c, m, M for its minimum and maximum processes

m(t) := min{X(s) : s ∈ [0, t]}, M(t) := max{X(s) : s ∈ [0, t]},
the payoff function involves the bivariate process (X,m), and the option price involves the joint
law of this process.

Consider first the case c = 0: we require the joint law of standard Brownian motion and its
maximum or minimum, (W,M) or (W,m). Taking (W,M) for definiteness, we start the Brownian
motion W at the origin at time zero, choose a level b > 0, and run the process until the first-passage
time (see Exercise 5.2)

τ(b) := inf{t ≥ 0 : W (t) ≥ b}
at which the level b is first attained. This is a stopping time, and we may use the strong Markov
property for W at time τ(b). The process now begins afresh at level b, and by symmetry the
probabilistic properties of its further evolution are invariant under reflection in the level b (thought
of as a mirror). This reflection principle leads to the joint density of (W (t),M(t)) as

IP0 (W (t) ∈ dx,M(t) ∈ dy)

=
2(2y − x)√

2πt3
exp

{
−1

2
(2y − x)2/t

}
(0 ≤ x ≤ y),

a formula due to Lévy. (Lévy also obtained the identity in law of the bivariate processes (M(t)−
W (t),M(t)) and (|W (t)|, L(t)), where L is the local time process of W at zero: see e.g. Revuz
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and Yor (1991), VI.2). The idea behind the reflection principle goes back to work of Désiré
André in 1887, and indeed further, to the method of images of Lord Kelvin (1824-1907), then
Sir William Thomson, of 1848 on electrostatics. For background on this, see any good book on
electromagnetism, e.g. Jeans (1925), Chapter VIII.

Lévy’s formula for the joint density of (W (t),M(t)) may be extended to the case of general
drift c by the usual method for changing drift, Girsanov’s theorem. The general result is

IP0 (X(t) ∈ dx,M(t) ∈ dy)

=
2(2y − x)√

2πt3
exp

{
− (2y − x)2

2t
+ cx− 1

2
c2t

}
(0 ≤ x ≤ y).

See e.g. Rogers and Williams (1994), I, (13.10), or Harrison (1985), §1.8. As an alternative to
the probabilistic approach above, a second approach to this formula makes explicit use of Kelvin’s
language – mirrors, sources, sinks; see e.g. Cox and Miller (1972), §5.7.

Given such an explicit formula for the joint density of (X(t), M(t)) – or equivalently, (X(t),m(t))
– we can calculate the option price by integration. The factor S(T ) −K, or S −K, gives rise to
two terms, in S and K, while the integrals, involving relatives of the normal density function n,
may be obtained explicitly in terms of the normal distribution function N – both features familiar
from the Black-Scholes formula. Indeed, this resemblance makes it convenient to decompose the
price DOCK,H of the down-and-out call into the (Black-Scholes) price of the corresponding vanilla
call, CK say, and the knockout discount, KODK,H say, by which the knockout barrier at H lowers
the price:

DOCK,H = CK −KODK,H .

The details of the integration, which are tedious, are omitted; the result is, writing λ := r − 1
2σ2,

KODK,H = p0(H/p0)2+2λ/σ2
N(c1)−Ke−rT (H/p0)2λ/σ2

N(c2),

where p0 is the initial stock price as usual and c1, c2 are functions of the price p = p0 and time
t = T given by

c1,2(p, t) =
log(H2/pK) + (r ± 1

2σ2)t
σ
√

t

(the notation is that of the excellent text Musiela and Rutkowski (1997), §9.6, to which we refer
for further detail). The other cases of vanilla barrier options, and their sensitivity analysis, are
given in detail in Zhang (1997), Chapter 10.



Chapter 5

Interest Rate Theory

5.1 The Bond Market

5.1.1 The Term Structure of Interest Rates

We start with a heuristic discussion, which we will formalize in the following section. The main
traded objects we consider are zero-coupon bonds. A zero-coupon bond is a bond that has no
coupon payments. The price of a zero-coupon bond at time t that pays, say, a sure £ at time
T ≥ t is denoted p(t, T ). All zero-coupon bonds are assumed to be default-free and have strictly
positive prices. Various different interest rates are defined in connection with zero-coupon bonds,
but we will only consider continuously compounded interest rates (which facilitates theoretical
considerations).

Using the arbitrage pricing technique, we easily obtain pricing formulas for coupon bonds.
Coupon bonds are bonds with regular interest payments, called coupons, plus a principal repay-
ment at maturity. Let cj be the payments at times tj , j = 1, . . . , n, F be the face value paid at
time tn. Then the price of the coupon bond Bc must satisfy

Bc =
n∑

j=1

cjp(0, tj) + Fp(0, tn). (5.1)

Hence, we see that a coupon bond is equivalent to a portfolio of zero-coupon bonds.
The yield-to-maturity is defined as an interest rate per annum that equates the present value

of future cash flows to the current market value. Using continuous compounding, the yield-to-
maturity yc is defined by the relation

Bc =
n∑

j=1

cj exp{−yctj}+ F exp{−yctn}.

If for instance the tj , j = 1, . . . , n are expressed in years, then yc is an annual continuously
compounded yield-to-maturity (with the continuously compounded annual interest rate, r(T ),
defined by the relation p(0, T ) = exp {−r(T ) (T/365)}).

The term structure of interest rates is defined as the relationship between the yield-to-maturity
on a zero-coupon bond and the bond’s maturity. Normally, this yields an upward sloping curve
(as in figure 5.1), but flat and downward sloping curves have also been observed.

In constructing the term structure of interest rates, we face the additional problem that in
most economies no zero-coupon bonds with maturity greater than one year are traded (in the
USA, Treasury bills are only traded with maturity up to one year). We can, however, use prices of
coupon bonds and invert formula (5.1) for zero-coupon prices. In practice, additional complications
arise, since the maturities of coupon bonds are not equally spaced and trading in bonds with some
maturities may be too thin to give reliable prices. We refer the reader to Jarrow and Turnbull
(2000) for further discussion of these issues.
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6
Yield

- Maturity

Figure 5.1: Yield curve

5.1.2 Mathematical Modelling

Let (Ω,F , IP, IF ) be a filtered probability space with a filtration IF = (Ft)t≤T∗ satisfying the usual
conditions (used to model the flow of information) and fix a terminal time horizon T ∗. We assume
that all processes are defined on this probability space. The basic building blocks for our relative
pricing approach, zero-coupon bonds, are defined as follows.

Definition 5.1.1. A zero-coupon bond with maturity date T , also called a T -bond, is a contract
that guarantees the holder a cash payment of one unit on the date T . The price at time t of a bond
with maturity date T is denoted by p(t, T ).

Obviously we have p(t, t) = 1 for all t. We shall assume that the price process p(t, T ), t ∈ [0, T ]
is adapted and strictly positive and that for every fixed t, p(t, T ) is continuously differentiable in
the T variable.

Based on arbitrage considerations (recall our basic aim is to construct a market model that is
free of arbitrage), we now define several risk-free interest rates. Given three dates t < T1 < T2

the basic question is: what is the risk-free rate of return, determined at the contract time t, over
the interval [T1, T2] of an investment of 1 at time T1? To answer this question we consider the
arbitrage Table 5.1 below (compare §1.3 for the use of arbitrage tables).

Time t T1 T2

Sell T1 bond Pay out 1
Buy p(t,T1)

p(t,T2)
T2 bonds Receive p(t,T1)

p(t,T2)

Net investment 0 −1 +p(t,T1)
p(t,T2)

Table 5.1: Arbitrage table for forward rates

To exclude arbitrage opportunities, the equivalent constant rate of interest R over this period
(we pay out 1 at time T1 and receive eR(T2−T1) at T2) has thus to be given by

eR(T2−T1) =
p(t, T1)
p(t, T2)

.
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We formalize this in:

Definition 5.1.2. (i) The forward rate for the period [T1, T2] as seen at time at t is defined as

R(t;T1, T2) = − log p(t, T2)− log p(t, T1)
T2 − T1

.

(ii) The spot rate R(T1, T2), for the period [T1, T2] is defined as

R(T1, T2) = R(T1;T1, T2).

(iii) The instantaneous forward rate with maturity T , at time t, is defined by

f(t, T ) = −∂ log p(t, T )
∂T

.

(iv) The instantaneous short rate at time t is defined by

r(t) = f(t, t).

Definition 5.1.3. The money account process is defined by

B(t) = exp





t∫

0

r(s)ds



.

The interpretation of the money market account is a strategy of instantaneously reinvesting at
the current short rate.

Lemma 5.1.1. For t ≤ s ≤ T we have

p(t, T ) = p(t, s) exp



−

T∫

s

f(t, u)du



,

and in particular

p(t, T ) = exp



−

T∫

t

f(t, s)ds



.

In what follows, we model the above processes in a generalized Black-Scholes framework. That
is, we assume that W = (W1, . . . ,Wd) is a standard d-dimensional Brownian motion and the
filtration IF is the augmentation of the filtration generated by W (t). The dynamics of the various
processes are given as follows:

Short-rate Dynamics:
dr(t) = a(t)dt + b(t)dW (t), (5.2)

Bond-price Dynamics:

dp(t, T ) = p(t, T ) {m(t, T )dt + v(t, T )dW (t)}, (5.3)

Forward-rate Dynamics:

df(t, T ) = α(t, T )dt + σ(t, T )dW (t). (5.4)
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We assume that in the above formulas, the coefficients meet standard conditions required to
guarantee the existence of the various processes – that is, existence of solutions of the various
stochastic differential equations. Furthermore, we assume that the processes are smooth enough
to allow differentiation and certain operations involving changing of order of integration and
differentiation. Since the actual conditions are rather technical, we refer the reader to Björk (1997),
Heath, Jarrow, and Morton (1992) and Protter (2004) (the latter reference for the stochastic Fubini
theorem) for these conditions.

Following Björk (1997) for formulation and proof, we now give a small toolbox for the rela-
tionships between the processes specified above.

Proposition 5.1.1. (i) If p(t, T ) satisfies (5.3), then for the forward-rate dynamics we have

df(t, T ) = α(t, T )dt + σ(t, T )dW (t),

where α and σ are given by
{

α(t, T ) = vT (t, T )v(t, T )−mT (t, T ),
σ(t, T ) = −vT (t, T ).

(ii) If f(t, T ) satisfies (5.4), then the short rate satisfies

dr(t) = a(t)dt + b(t)dW (t),

where a and b are given by
{

a(t) = fT (t, t) + α(t, t),
b(t) = σ(t, t). (5.5)

(iii) If f(t, T ) satisfies (5.4), then p(t, T ) satisfies

dp(t, T ) = p(t, T )
{

r(t) + A(t, T ) +
1
2
‖S(t, T )‖2

}
dt + p(t, T )S(t, T )dW (t),

where

A(t, T ) = −
T∫

t

α(t, s)ds, S(t, T ) = −
T∫

t

σ(t, s)ds. (5.6)

Proof. To prove (i) we only have to apply Itô’s formula to the defining equation for the
forward rates.

To prove (ii) we start by integrating the forward-rate dynamics. This leads to

f(t, t) = r(t) = f(0, t) +

t∫

0

α(s, t)ds +

t∫

0

σ(s, t)dW (s). (5.7)

Writing also α and σ in integrated form

α(s, t) = α(s, s) +

t∫

s

αT (s, u)du,

σ(s, t) = σ(s, s) +

t∫

s

σT (s, u)du,
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and inserting this into (5.7), we find

r(t) = f(0, t) +

t∫

0

α(s, s)ds +

t∫

0

t∫

s

αT (s, u)duds

+

t∫

0

σ(s, s)dW (s) +

t∫

0

t∫

s

σT (s, u)dudW (s).

After changing the order of integration we can identify terms to establish (ii).
For (iii) we use a technique from Heath, Jarrow, and Morton (1992); compare Björk (1997).

By the definition of the forward rates we may write the bond-price process as

p(t, T ) = exp{Z(t, T )},
where Z is given by

Z(t, T ) = −
T∫

t

f(t, s)ds. (5.8)

Again we write (5.4) in integrated form:

f(t, s) = f(0, s) +

t∫

0

α(u, s)dt +

t∫

0

σ(u, s)dW (u).

We insert the integrated form in (5.8) to get

Z(t, T ) = −
T∫

t

f(0, s)ds−
t∫

0

T∫

t

α(u, s)dsdu−
t∫

0

T∫

t

σ(u, s)dsdW (u).

Now, splitting the integrals and changing the order of integration gives us

Z(t, T ) = −
T∫

0

f(0, s)ds−
t∫

0

T∫

u

α(u, s)dsdu−
t∫

0

T∫

u

σ(u, s)dsdW (u)

+

t∫

0

f(0, s)ds +

t∫

0

t∫

u

α(u, s)dsdu +

t∫

0

t∫

u

σ(u, s)dsdW (u)

= Z(0, T )−
t∫

0

T∫

u

α(u, s)dsdu−
t∫

0

T∫

u

σ(u, s)dsdW (u)

+

t∫

0

f(0, s)ds +

t∫

0

s∫

0

α(u, s)duds +

t∫

0

s∫

0

σ(u, s)dW (u)ds.

The last line is just the integrated form of the forward-rate dynamics (5.4) over the interval [0, s].
Since r(s) = f(s, s), this last line above equals

∫ t

0
r(s)ds. So we obtain

Z(t, T ) = Z(0, T ) +

t∫

0

r(s)ds−
t∫

0

T∫

u

α(u, s)dsdu−
t∫

0

T∫

u

σ(u, s)dsdW (u).

Using A and S from (5.6), the stochastic differential of Z is given by

dZ(t, T ) = (r(t) + A(t, T ))dt + S(t, T )dW (t).

Now we can apply Itô’s lemma to the process p(t, T ) = exp{Z(t, T )} to complete the proof.
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5.1.3 Bond Pricing, Martingale Measures and Trading Strategies

We will now examine the mathematical structure of our bond-market model in more detail. As
usual, our first task is to find a convenient characterization of the no-arbitrage assumption. By
Theorem 4.2.1, absence of arbitrage is guaranteed by the existence of an equivalent martingale
measure QQ. Recall that by definition an equivalent martingale measure has to satisfy QQ ∼ IP and
the discounted price processes (with respect to a suitable numéraire) of the basic securities have
to be QQ-martingales. For the bond market this implies that all zero-coupon bonds with maturities
0 ≤ T ≤ T ∗ have to be martingales.

More precisely, taking the risk-free bank account B(t) as numéraire we have

Definition 5.1.4. A measure QQ ∼ IP defined on (Ω,F , IP ) is an equivalent martingale measure
for the bond market, if for every fixed 0 ≤ T ≤ T ∗ the process

p(t, T )
B(t)

, 0 ≤ t ≤ T

is a QQ-martingale.

Assume now that there exists at least one equivalent martingale measure, say QQ. Defining
contingent claims as FT -measurable random variables such that X/B(T ) ∈ L1(FT , QQ) with some
0 ≤ T ≤ T ∗ (notation: T -contingent claims), we can use the risk-neutral valuation principle (4.6)
to obtain:

Proposition 5.1.2. Consider a T -contingent claim X. Then the price process ΠX(t), 0 ≤ t ≤ T
of the contingent claim is given by

ΠX(t) = B(t)IEQQ

[
X

B(T )

∣∣∣∣Ft

]
= IEQQ

[
Xe−

∫ T
t

r(s)ds
∣∣∣Ft

]
.

In particular, the price process of a zero-coupon bond with maturity T is given by

p(t, T ) = IEQQ

[
e−

∫ T
t

r(s)ds
∣∣∣Ft

]
.

Proof. We just have to apply Theorem 4.2.3.

We thus see that the relevant dynamics of the price processes are those given under a martingale
measure QQ. The implication for model building is that it is natural to model all objects directly
under a martingale measure QQ. This approach is called martingale modelling. The price one has
to pay in using this approach lies in the statistical problems associated with parameter estimation.

5.2 Short-rate Models

Following our introductory remarks, we now look at models of the short rate of the type

dr(t) = a(t, r(t))dt + b(t, r(t))dW (t), (5.9)

with functions a, b sufficiently regular and W a real-valued Brownian motion.
The crucial point in this setting is the assumption on the probability measure under which the

short rate is modelled.
If we model under the objective probability measure IP and assume that a locally risk-free

asset B (the money market) exists, we face the question whether in an arbitrage-free market bond
prices – quite naturally viewed as derivatives with the short rate as underlying – are uniquely
determined. In contrast to the equity market setting, with a risky asset and a risk-free asset
available for trading, the short rate r is not the price of a traded asset, and hence we only can



CHAPTER 5. INTEREST RATE THEORY 97

set up portfolios consisting of putting money in the bank account. We thus face an incomplete
market situation, and the best we can hope for is to find consistency requirements for bonds of
different maturity. Given a single ‘benchmark’ bond, we should then be able to price all other
bonds relative to this given bond.

On the other hand, if we assume that the short rate is modelled under an equivalent martingale
measure, we can immediately price all contingent claims via the risk-neutral valuation formula.
The drawback in this case is the question of calibrating the model (we do not observe the pa-
rameters of the process under an equivalent martingale measure, but rather under the objective
probability measure!).

5.2.1 The Term-structure Equation

Let us assume that the short-rate dynamics satisfy (5.9) under the historical probability measure
IP . In our Brownian setting, we know that each equivalent martingale measure QQ is given in terms
of a Girsanov density

L(t) = exp



−

t∫

0

γ(u)dW (u)− 1
2

t∫

0

γ(u)2du



, 0 ≤ t ≤ T.

Assume now that γ is given as γ(t) = λ(t, r(t)), with a sufficiently smooth function λ. (We will
use the notation QQ(λ) to emphasize the dependence of the equivalent martingale measure on λ).
By Girsanov’s Theorem 4.1.4, we know that W̃ = W +

∫
λdt is a QQ(λ)-Brownian motion. So the

QQ(λ)-dynamics of r are given by

dr(t) = {a(t, r(t))− b(t, r(t))λ(t, r(t))}dt + b(t, r(t))dW̃ (t).

Now consider a T -contingent claim X = Φ(r(T )), for some sufficiently smooth function Φ : IR →
IR+. We know that using the risk-neutral valuation formula we obtain arbitrage-free prices for any
contingent claim by applying the expectation operator under an equivalent martingale measure
(to the discounted time T value). An slight modification of the argument used to find the Black-
Scholes PDE yields, for any QQ(λ),

IEQQ(λ)

[
e−

∫ T
t

r(u)duΦ(r(T ))
∣∣∣Ft

]
= F (t, r(t)),

where F : [0, T ∗]×IR → IR satisfies the partial differential equation (we omit the arguments (t, r))

Ft + (a− bλ)Fr +
1
2
b2Frr − rF = 0 (5.10)

and terminal condition F (T, r) = Φ(r), for all r ∈ IR. Suppose now that the price process p(t, T )
of a T -bond is determined by the assessment, at time t, of the segment {r(τ), t ≤ τ ≤ T} of the
short rate process over the term of the bond. So we assume

p(t, T ) = F (t, r(t); T ),

with F a sufficiently smooth function.
Since we know that the value of a zero-coupon bond is one unit at maturity, we have the

terminal condition F (T, r; T ) = 1. Thus we have

Proposition 5.2.1 (Term-structure Equation). If there exists an equivalent martingale mea-
sure of type QQ(λ) for the bond market (implying that the no-arbitrage condition holds) and the
price processes p(t, T ) of T -bonds are given are given by a sufficiently smooth function F as above,
then F will satisfy the partial differential equation (5.10) with terminal condition F (T, r; T ) = 1.
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5.2.2 Martingale Modelling

We now fix an equivalent martingale measure QQ (which we assume to exist), and return to mod-
elling the short-rate dynamics directly under QQ. Thus we assume that r has QQ-dynamics

dr(t) = a(t, r(t))dt + b(t, r(t))dW (t) (5.9)

with W a (real-valued) QQ-Wiener process. We can immediately apply the risk-neutral valuation
technique to obtain the price process ΠX(t) of any sufficiently integrable T -contingent claim X
by computing the QQ-expectation, i.e.

ΠX(t) = IEQQ

[
e−

∫ T
t

r(u)duX|Ft

]
. (5.11)

If, additionally, the contingent claim is of the form X = Φ(r(T )) with a sufficiently smooth function
Φ, we obtain

Proposition 5.2.2 (Term-structure Equation). Consider T -contingent claims of the form
X = Φ(r(T )). Then arbitrage-free price processes are given by ΠX(t) = F (t, r(t)), where F is the
solution of the partial differential equation

Ft + aFr +
b2

2
Frr − rF = 0 (5.12)

with terminal condition F (T, r) = Φ(r) for all r ∈ IR. In particular, T -bond prices are given by
p(t, T ) = F (t, r(t); T ), with F solving (5.12) and terminal condition F (T, r; T ) = 1.

Suppose we want to evaluate the price of a European call option with maturity S and strike
K on an underlying T -bond. This means we have to price the S-contingent claim

X = max{p(S, T )−K, 0}.
We first have to find the price process p(t, T ) = F (t, r; T ) by solving (5.12) with terminal condition
F (T, r; T ) = 1. Secondly, we use the risk-neutral valuation principle to obtain ΠX(t) = G(t, r),
with G solving

Gt + aGr +
b2

2
Grr − rG = 0 and G(S, r) = max{F (S, r; T )−K, 0}, ∀r ∈ IR.

So we are clearly in need of efficient methods of solving the above partial differential equations, or
from a modelling point of view, we need short-rate models that facilate this computational task.
Fortunately, there is a class of models, exhibiting an affine term structure (ATS), which allows for
simplification.

Definition 5.2.1. If bond prices are given as

p(t, T ) = exp {A(t, T )−B(t, T )r}, 0 ≤ t ≤ T,

with A(t, T ) and B(t, T ) are deterministic functions, we say that the model possesses an affine
term structure.

Assuming that we have such a model in which both a and b2 are affine in r, say a(t, r) =
α(t)− β(t)r and b(t, r) =

√
γ(t) + δ(t)r, we find that A and B are given as solutions of ordinary

differential equations,

At(t, T )− α(t)B(t, T ) +
γ(t)
2

B2(t, T ) = 0, A(T, T ) = 0,

(1 + Bt(t, T ))− β(t)B(t, T )− δ(t)
2

B2(t, T ) = 0, B(T, T ) = 0.

The equation for B is a Riccati equation, which can be solved analytically, see Ince (1944), §2.15,
12.51, A.21. Using the solution for B we get A by integrating.

Examples of short-rate models exhibiting an affine term structure include the following.
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1. Vasicek model: dr = (α− βr)dt + γdW ;

2. Cox-Ingersoll-Ross (CIR) model: dr = (α− βr)dt + δ
√

rdW ;

3. Ho-Lee model: dr = α(t)dt + γdW ;

4. Hull-White (extended Vasicek) model: dr = (α(t)− β(t)r)dt + γ(t)dW ;

5. Hull-White (extended CIR) model: dr = (α(t)− β(t)r)dt + δ(t)
√

rdW .

5.3 Heath-Jarrow-Morton Methodology

5.3.1 The Heath-Jarrow-Morton Model Class

Modelling the term structure with only one explanatory variable leads to various undesirable
properties of the model (to say the least). Various authors have proposed models with more
than one state variable, e.g. the short rate and a long rate and/or intermediate rates. The
Heath-Jarrow-Morton method (compare Heath, Jarrow, and Morton (1992)) is at the far end of
this spectrum – they propose using the entire forward rate curve as their (infinite-dimensional)
state variable. More precisely, for any fixed T ≤ T ∗ the dynamics of instantaneous, continuously
compounded forward rates f(t, T ) are exogenously given by

df(t, T ) = α(t, T )dt + σ(t, T )dW (t), (5.4)

where W is a d-dimensional Brownian motion with respect to the underlying (objective) prob-
ability measure IP and α(t, T ) resp. σ(t, T ) are adapted IR resp. IRd-valued processes. For any
fixed maturity T , the initial condition of the stochastic differential equation (5.4) is determined
by the current value of the empirical (observed) forward rate for the future date T which prevails
at time 0. Observe that we have defined an infinite-dimensional stochastic system, and that by
construction we obtain a perfect fit to the observed term structure (thus avoiding the problem of
inverting the yield curve).

The exogenous specification of the family of forward rates {f(t, T ); T > 0} is equivalent to a
specification of the entire family of bond prices {p(t, T ); T > 0}. Furthermore, by Proposition
5.1.1 we obtain the dynamics of the bond-price processes as

dp(t, T ) = p(t, T ) {m(t, T )dt + S(t, T )dW (t)}, (5.13)

where
m(t, T ) = r(t) + A(t, T ) +

1
2
‖S(t, T )‖2 , (5.14)

A(t, T ) = − ∫ T

t
α(t, s)ds and S(t, T ) = − ∫ T

t
σ(t, s)ds (compare (5.6)). We now explore what

conditions we must impose on the coefficients in order to ensure the existence of an equivalent
martingale measure with respect to a suitable numéraire. By Theorem 4.2.1, we then could
conclude that our bond market model is free of arbitrage.

As a first possible choice of numéraire, we use the money-market account B (assuming that
there exists a measurable version of f(t, t) in [0, T ∗]), given by

B(t) = exp





t∫

0

f(u, u)du



 = exp





t∫

0

r(u)du



.

So we allow investments in a savings account too. We must find an equivalent measure such that

Z(t, T ) =
p(t, T )
B(t)

is a martingale for every 0 ≤ T ≤ T ∗. We will call such a measure risk-neutral martingale measure
to emphasize the dependence on the numéraire.
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Theorem 5.3.1. Assume that the family of forward rates is given by (5.4). Then there exists
a risk-neutral martingale measure if and only if there exists an adapted process λ(t), with the
properties that

(i)
∫ T

0
‖λ(t)‖2 dt < ∞, a.s. and IE(L(T )) = 1, with

L(t) = exp



−

t∫

0

λ(u)′dW (u)− 1
2

t∫

0

‖λ(u)‖2 du



. (5.15)

(ii) For all 0 ≤ T ≤ T ∗ and for all t ≤ T , we have

α(t, T ) = σ(t, T )

T∫

t

σ(t, s)ds + σ(t, T )λ(t). (5.16)

Proof. Since we are working in a Brownian framework we know that any equivalent measure
QQ ∼ IP is given via a Girsanov density (5.15). Using Itô’s formula and Girsanov’s Theorem 4.1.4,
we find the QQ-dynamics of Z(t, T ) (omitting the arguments) as:

dZ = Z

(
A +

1
2
‖S‖2 − Sλ

)
dt + ZSdW̃ , (5.17)

with W̃ a QQ-Brownian motion. In order for Z to be a QQ-martingale, the drift coefficient in (5.17)
has to be zero, so we obtain

A(t, T ) +
1
2
‖S(t, T )‖2 = S(t, T )λ(t). (5.18)

Taking the derivative with respect to T , we get

−α(t, T )− σ(t, T )S(t, T ) = −σ(t, T )λ(t),

which after rearranging is (5.16).

It is possible to interpret λ as a risk premium, which has to be exogenously specified to allow the
choice of a particular risk-neutral martingale measure. In view of (5.16) this leads to a restriction
on drift and volatility coefficients in the specification of the forward rate dynamics (5.4). The
particular choice λ ≡ 0 means that we assume we model directly under a risk-neutral martingale
measure QQ. In that case the relations between the various infinitesimal characteristics for the
forward rate are known as the ‘Heath-Jarrow-Morton drift condition’.

Theorem 5.3.2 (Heath-Jarrow-Morton). Assume that QQ is a risk-neutral martingale measure
for the bond market and that the forward-rate dynamics under QQ are given by

df(t, T ) = α(t, T )dt + σ(t, T )dW̃ (t), (5.19)

with W̃a QQ-Brownian motion. Then we have:

(i) the Heath-Jarrow-Morton drift condition

α(t, T ) = σ(t, T )

T∫

t

σ(t, s)ds, 0 ≤ t ≤ T ≤ T ∗, QQ− a.s., (5.20)

(ii) and bond-price dynamics under QQ are given by

dp(t, T ) = p(t, T )r(t)dt + p(t, T )S(t, T )dW̃ (t),

with S as in (5.6).



CHAPTER 5. INTEREST RATE THEORY 101

5.3.2 Forward Risk-neutral Martingale Measures

For many valuation problems in the bond market it is more suitable to use the bond price process
p(t, T ∗) as numéraire. We then have to find an equivalent probability measure QQ∗ such that the
auxiliary process

Z∗(t, T ) =
p(t, T )
p(t, T ∗)

, ∀t ∈ [0, T ],

is a martingale under QQ∗ for all T ≤ T ∗. We will call such a measure forward risk-neutral mar-
tingale measure. In this setting, a savings account is not used and the existence of a martingale
measure QQ∗ guarantees that there are no arbitrage opportunities between bonds of different ma-
turities.

In order to find sufficient conditions for the existence of such a martingale measure, we follow
the same programme as above. By (5.13) bond price dynamics under the original probability
measure IP are given as

dp(t, T ) = p(t, T ) {m(t, T )dt + S(t, T )dW (t)},

with m(t, T ) as in (5.14). Now applying Itô’s formula to the quotient p(t, T )/p(t, T ∗) we find

dZ∗(t, T ) = Z∗(t, T ) {m̃(t, T )dt + (S(t, T )− S(t, T ∗))dW (t)}, (5.21)

with m̃(t, T ) = m(t, T )−m(t, T ∗)−S(t, T ∗)(S(t, T )−S(t, T ∗)). Again, any equivalent martingale
measure QQ∗ is given via a Girsanov density L(t) defined by a function γ(t) as in Theorem 5.3.1.
So the drift coefficient of Z∗(t, T ) under QQ∗ is given as

m̃(t, T )− (S(t, T )− S(t, T ∗))γ(t).

Now for Z∗(t, T ) to be a QQ∗-martingale this coefficient has to be zero, and replacing m̃ with its
definition we get

(A(t, T )−A(t, T ∗)) +
1
2

(
‖S(t, T )‖2 − ‖S(t, T ∗)‖2

)

= (S(t, T ∗) + γ(t)) (S(t, T )− S(t, T ∗)) .

Written in terms of the coefficients of the forward-rate dynamics, this identity simplifies to

T∗∫

T

α(t, s)ds +
1
2

∥∥∥∥∥∥

T∗∫

T

σ(t, s)ds

∥∥∥∥∥∥

2

= γ(t)

T∗∫

T

σ(t, s)ds.

Taking the derivative with respect to T , we obtain

α(t, T ) + σ(t, T )

T∗∫

T

σ(t, s)ds = γ(t)σ(t, T ).

We have thus proved:

Theorem 5.3.3. Assume that the family of forward rates is given by (5.4). Then there exists a
forward risk-neutral martingale measure if and only if there exists an adapted process γ(t), with
the properties (i) of Theorem 5.3.1, such that

α(t, T ) = σ(t, T ) (S(T, T ∗) + γ(t)), 0 ≤ t ≤ T ≤ T ∗.
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5.4 Pricing and Hedging Contingent Claims

5.4.1 Gaussian HJM Framework

Assume that the dynamics of the forward rate are given under a risk-neutral martingale measure
QQ by

df(t, T ) = α(t, T )dt + σ(t, T )dW̃ (t), f(0, T ) = f̂(0, T ),

with all processes real-valued. We restrict the class of models by assuming that the forward rate’s
volatility is deterministic. The HJM-drift condition (5.20) and the integrated form of the forward
rate (compare (5.7)) lead to

f(t, t) = r(t) = f(0, t) +

t∫

0

(−σ(u, t)S(u, t))du +

t∫

0

σ(u, t)dW̃ (u),

which implies that the short-rate (as well as the forward rates f(t, T )) have Gaussian probability
laws (hence the terminology). By Theorem 5.3.2, bond-price dynamics under QQ are given by

dp(t, T ) = p(t, T )
{

r(t)dt + S(t, T )dW̃ (t)
}

,

which we can solve in special cases explicitly for p(t, T ).
To price options on zero-coupon bonds, we use the change of numéraire technique. Consider

a European call C on a T ∗-bond with maturity T ≤ T ∗ and strike K. So we consider the T -
contingent claim

X = (p(T, T ∗)−K)+. (5.22)

The price of this call at time t = 0 is given as

C(0) = p(0, T ∗)QQ∗(A)−Kp(0, T )QQT (A),

with A = {ω : p(T, T ∗) > K} and QQT resp. QQ∗ the T - resp. T ∗-forward risk-neutral measure.
Now

Z̃(t, T ) =
p(t, T ∗)
p(t, T )

has QQ-dynamics (omitting the arguments and writing S∗ for S(t, T ∗))

dZ̃ = Z̃
{

S(S − S∗)dt− (S − S∗)dW̃ (t)
}

,

so a deterministic variance coefficient. Now

QQ∗(p(T, T ∗) ≥ K) = QQ∗
(

p(T, T ∗)
p(T, T )

≥ K

)
= QQ∗(Z̃(T, T ) ≥ K).

Since Z̃(t, T ) is a QQT -martingale with QQT -dynamics

dZ̃(t, T ) = −Z̃(t, T )(S(t, T )− S(t, T ∗))dWT (t),

we find that under QQT (again S = S(t, T ), S∗ = S(t, T ∗))

Z̃(T, T ) =
p(0, T ∗)
p(0, T )

exp



−

T∫

0

(S − S∗)dWT (t)− 1
2

T∫

0

(S − S∗)2dt





(with WT a QQT -Brownian motion). The stochastic integral in the exponential is Gaussian with
zero mean and variance

Σ2(T ) =

T∫

0

(S(t, T )− S(t, T ∗))2dt.
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So
QQT (p(T, T ∗) ≥ K) = QQT (Z̃(T, T ) ≥ K) = N(d2)

with

d2 =
log

(
p(0,T )

Kp(0,T∗)

)
− 1

2Σ2(T )
√

Σ2(T )
.

Similarly, for the first term

Z∗(t, T ) =
p(t, T )
p(t, T ∗)

has QQ-dynamics (compare (5.21))

dZ∗ = Z∗
{

S∗(S∗ − S)dt + (S − S∗)dW̃ (t)
}

,

and also a deterministic variance coefficient. Now

QQ∗(p(T, T ∗) ≥ K) = QQ∗
(

1
p(T, T ∗)

≤ 1
K

)
= QQ∗(Z∗(T, T ) ≤ 1

K
).

Under QQ∗ Z∗(t, T ) is a martingale with

dZ∗(t, T ) = Z∗(t, T )(S(t, T )− S(t, T ∗))dW ∗(t),

so

dZ∗(T, T ) =
p(0, T )
p(0, T ∗)

exp





T∫

0

(S − S∗)dW ∗(t)− 1
2

T∫

0

(S − S∗)2dt



.

Again we have a Gaussian variable with the (same) variance Σ2(T ) in the exponential. Using this
fact it follows (after some computations) that:

QQ∗(p(T, T ∗) ≥ K) = N(d1),

with
d1 = d2 +

√
Σ2(T ).

So we obtain:

Proposition 5.4.1. The price of the call option defined in (5.22) is given by

C(0) = p(0, T ∗)N(d2)−Kp(0, T )N(d1), (5.23)

with parameters given as above.

5.4.2 Swaps

This section is devoted to the pricing of swaps. We consider the case of a forward swap settled in
arrears. Such a contingent claim is characterized by:

• a fixed time t, the contract time,

• dates T0 < T1, . . . < Tn, equally distanced Ti+1 − Ti = δ,

• R, a prespecified fixed rate of interest,

• K, a nominal amount.
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A swap contract S with K and R fixed for the period T0, . . . Tn is a sequence of payments, where
the amount of money paid out at Ti+1, i = 0, . . . , n− 1 is defined by

Xi+1 = Kδ(L(Ti, Ti)−R).

The floating rate over [Ti, Ti+1] observed at Ti is a simple rate defined as

p(Ti, Ti+1) =
1

1 + δL(Ti, Ti)
.

We do not need to specify a particular interest-rate model here, all we need is the existence of a
risk-neutral martingale measure. Using the risk-neutral pricing formula we obtain (we may use
K = 1),

Π(t, S) =
n∑

i=1

IEQQ

[
e−

∫ T
t

r(s)dsδ(L(Ti, Ti)−R)
∣∣∣Ft

]

=
n∑

i=1

IEQQ

[
IEQQ

[
e
− ∫ Ti

Ti−1
r(s)ds

∣∣∣∣FTi−1

]

× e−
∫ T

t
r(s)ds

(
1

p(Ti−1, Ti)
− (1 + δR)

)∣∣∣∣Ft

]

=
n∑

i=1

(p(t, Ti−1)− (1 + δR)p(t, Ti)) = p(t, T0)−
n∑

i=1

cip(t, Ti),

with ci = δR, i = 1, . . . , n − 1 and cn = 1 + δR. So a swap is a linear combination of zero-
coupon bonds, and we obtain its price accordingly. This again shows the power of risk-neutral
pricing. Using the linearity of the expectation operator we can reduce complicated claims to sums
of simpler ones.

5.4.3 Caps

An interest cap is a contract where the seller of the contract promises to pay a certain amount of
cash to the holder of the contract if the interest rate exceeds a certain predetermined level (the
cap rate) at some future date. A cap can be broken down in a series of caplets. A caplet is a
contract written at t, in force between [T0, T1], δ = T1−T0, the nominal amount is K, the cap rate
is denoted by R. The relevant interest rate (LIBOR, for instance) is observed in T0 and defined
by

p(T0, T1) =
1

1 + δL(T0, T0)
.

A caplet C is a T1-contingent claim with payoff X = Kδ(L(T0, T0)−R)+. Writing L = L(T0, T0), p =
p(T0, T1), R∗ = 1 + δR, we have L = (1− p)/(δp), (assuming K = 1) and

X = δ(L−R)+ = δ

(
1− p

δp
−R

)+

=
(

1
p
− (1 + δR)

)+

=
(

1
p
−R∗

)+

.
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The risk-neutral pricing formula leads to

ΠC(t) = IEQQ

[
e−

∫ T1
t r(s)ds

(
1
p −R∗

)+
∣∣∣∣Ft

]

= IEQQ

[
IEQQ

[
e−

∫ T1
T0

r(s)ds
∣∣∣FT0

]
e−

∫ T0
t r(s)ds

(
1
p
−R∗

)+
∣∣∣∣∣Ft

]

= IEQQ

[
p(T0, T1) e−

∫ T0
t r(s)ds

(
1
p
−R∗

)+
∣∣∣∣∣Ft

]

= IEQQ

[
e−

∫ T0
t r(s)ds (1− pR∗)+

∣∣∣Ft

]

= R∗IEQQ

[
e−

∫ T0
t r(s)ds

(
1

R∗
− p

)+
∣∣∣∣∣Ft

]
.

So a caplet is equivalent to R∗ put options on a T1-bond with maturity T0 and strike 1/R∗.



Appendix A

Basic Probability Background

A.1 Fundamentals

To describe a random experiment we use a sample space Ω, the set of all possible outcomes. Each
point ω of Ω, or sample point, represents a possible random outcome of performing the random
experiment.

Examples. Write down Ω for experiments such as flip a coin three times, roll two dice.
For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets of Ω whose

probabilities IP (A) are defined (call such A events) should be a σ-algebra , i.e.

(i) ∅, Ω ∈ F .

(ii) F ∈ F implies F c ∈ F .

(iii) F1, F2, . . . ∈ F then
⋃

n Fn ∈ F .

We want a probability measure defined on F
(i) IP (∅) = 0, IP (Ω) = 1,

(ii) IP (A) ≥ 0 for all A,

(iii) If A1, A2, . . . , are disjoint, IP (
⋃

i Ai) =
∑

i IP (Ai) countable additivity.

Definition A.1.1. A probability space, or Kolmogorov triple, is a triple (Ω,F , IP ) satisfying
Kolmogorov axioms (i),(ii) and (iii) above.

A probability space is a mathematical model of a random experiment.
Examples. Assign probabilities for the above experiments.

Definition A.1.2. Let (Ω,F , IP ) be a probability space. A random variable (vector) X is a
function X : Ω → IR(IRk) such that X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F for all Borel sets
B ∈ B(B(IRk)).

For a random variable X
{ω ∈ Ω : X(ω) ≤ x} ∈ F

for all x ∈ IR. So define the distribution function FX of X by

FX(x) := IP ({ω : X(ω) ≤ x}).

Recall: σ(X), the σ-algebra generated by X.

106
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Some important probability distributions

• Binomial distribution: Number of successes

IP (Sn = k) =
(

n

k

)
pk(1− p)n−k.

• Geometric distribution: Waiting time

IP (N = n) = p(1− p)n−1.

• Poisson distribution:

IP (X = k) = e−λ λk

k!
.

• Density of Uniform distribution:

f(x) =
1

b− a
1{(a,b)}.

• Density of Exponential distribution:

f(x) = λe−λx1{[0,∞)}.

• Density of standard Normal distribution:

f(x) =
1√
2π

e−x2/2.

Definition A.1.3. The expectation IE of a random variable X on (Ω,F , IP ) is defined by

IEX :=
∫

Ω

XdIP, or
∫

Ω

X(ω)dIP (ω).

The variance of a random variable is defined as

VV ar(X) := IE
[
(X − IE(X))2

]
= IE

(
X2

)− (IEX)2.

If X is real-valued with density f (i.e f(x) ≥ 0 :
∫

f(x)dx = 1),

IEX :=
∫

xf(x)dx

or if X is discrete, taking values xn(n = 1, 2, . . .) with probability function f(xn)(≥ 0),

IEX :=
∑

xnf(xn).

Examples. Calculate moments for some of the above distributions.
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Definition A.1.4. Random variables X1, . . . , Xn are independent if whenever Ai ∈ B (the Borel
σ-algebra) for i = 1, . . . n we have

IP

(
n⋂

i=1

{Xi ∈ Ai}
)

=
n∏

i=1

IP ({Xi ∈ Ai}).

Lemma A.1.1. In order for X1, . . . , Xn to be independent it is necessary and sufficient that for
all x1, . . . xn ∈ (−∞,∞],

IP

(
n⋂

i=1

{Xi ≤ xi}
)

=
n∏

i=1

IP ({Xi ≤ xi}).

Theorem A.1.1 (Multiplication Theorem). If X1, . . . , Xn are independent and IE |Xi| <
∞, i = 1, . . . , n, then

IE

(
n∏

i=1

Xi

)
=

n∏

i=1

IE(Xi).

If X, Y are independent, with distribution functions F , G, define Z := X +Y with distribution
function H. We call H the convolution of F and G, written H = F ∗G.

Suppose X, Y have densities f , g, then Z has a density h with

h(z) =

∞∫

−∞
f(z − y)g(y)dy =

∞∫

−∞
f(x)g(z − x)dx.

Example. Assume t1, . . . , tn are independent random variables that have an exponential distri-
bution with parameter λ. Then T = t1 + . . . + tn has the Gamma(n, λ) density function

f(x) =
λnxn−1

(n− 1)!
e−λx.

Definition A.1.5. If X is a random variable with distribution function F , its moment generating
function φX is

φ(t) := IE(etX) =

∞∫

−∞
etxdF (x).

The mgf takes convolution into multiplication: if X, Y are independent,

φX+Y (t) = φX(t)φY (t).

Observe φ(k)(t) = IE(XketX) and φ(0) = IE(Xk).
For X on nonnegative integers use the generating function

γX(z) = IE(zX) =
∞∑

k=0

zkIP (Z = k).

A.2 Convolution and Characteristic Functions

The most basic operation on numbers is addition; the most basic operation on random variables
is addition of independent random variables. If X, Y are independent, with distribution functions
F , G, and

Z := X + Y,
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let Z have distribution function H. Then since X + Y = Y + X (addition is commutative), H
depends on F and G symmetrically. We call H the convolution (German: Faltung) of F and G,
written

H = F ∗G.

Suppose first that X, Y have densities f , g. Then

H(z) = IP (Z ≤ z) = IP (X + Y ≤ z) =
∫

{(x,y):x+y≤z}

f(x)g(y)dxdy,

since by independence of X and Y the joint density of X and Y is the product f(x)g(y) of their
separate (marginal) densities, and to find probabilities in the density case we integrate the joint
density over the relevant region. Thus

H(z) =

∞∫

−∞
f(x)





z−x∫

−∞
g(y)dy



 dx =

∞∫

−∞
f(x)G(z − x)dx.

If

h(z) :=

∞∫

−∞
f(x)g(z − x)dx,

(and of course symmetrically with f and g interchanged), then integrating we recover the equation
above (after interchanging the order of integration. This is legitimate, as the integrals are non-
negative, by Fubini’s theorem, which we quote from measure theory, see e.g. (Williams 1991),
§8.2). This shows that if X, Y are independent with densities f , g, and Z = X + Y , then Z has
density h, where

h(x) =

∞∫

−∞
f(x− y)g(y)dy.

We write
h = f ∗ g,

and call the density h the convolution of the densities f and g.
If X, Y do not have densities, the argument above may still be taken as far as

H(z) = IP (Z ≤ z) = IP (X + Y ≤ z) =

∞∫

−∞
F (x− y)dG(y)

(and, again, symmetrically with F and G interchanged), where the integral on the right is the
Lebesgue-Stieltjes integral of §2.2. We again write

H = F ∗G,

and call the distribution function H the convolution of the distribution functions F and G.
In sum: addition of independent random variables corresponds to convolution of distribution

functions or densities.
Now we frequently need to add (or average) lots of independent random variables: for example,

when forming sample means in statistics – when the bigger the sample size is, the better. But
convolution involves integration, so adding n independent random variables involves n−1 integra-
tions, and this is awkward to do for large n. One thus seeks a way to transform distributions so
as to make the awkward operation of convolution as easy to handle as the operation of addition
of independent random variables that gives rise to it.
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Definition A.2.1. If X is a random variable with distribution function F , its characteristic
function φ (or φX if we need to emphasise X) is

φ(t) := IE(eitX) =

∞∫

−∞
eitxdF (x), (t ∈ IR).

Note.

Here i :=
√−1. All other numbers – t, x etc. – are real; all expressions involving i such as eitx,

φ(t) = IE(eitx) are complex numbers.
The characteristic function takes convolution into multiplication: if X, Y are independent,

φX+Y (t) = φX(t)φY (t).

For, as X, Y are independent, so are eitX and eitY for any t, so by the multiplication theorem
(Theorem B.3.1),

IE(eit(X+Y )) = IE(eitX · eitY ) = IE(eitX) · IE(eitY ),

as required.
We list some properties of characteristic functions that we shall need.

1. φ(0) = 1. For, φ(0) = IE(ei·0·X) = IE(e0) = IE(1) = 1.
2. |φ(t)| ≤ 1 for all t ∈ IR.
Proof. |φ(t)| =

∣∣∣
∫∞
−∞ eitxdF (x)

∣∣∣ ≤
∫∞
−∞

∣∣eitx
∣∣ dF (x) =

∫∞
−∞ 1dF (x) = 1.

Thus in particular the characteristic function always exists (the integral defining it is always
absolutely convergent). This is a crucial advantage, far outweighing the disadvantage of having to
work with complex rather than real numbers (the nuisance value of which is in fact slight).
3. φ is continuous (indeed, φ is uniformly continuous).
Proof.

|φ(t + u)− φ(t)| =

∣∣∣∣∣∣

∞∫

−∞
{ei(t+u)x − eitx}dF (x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∫

−∞
eitx(eiux − 1)dF (x)

∣∣∣∣∣∣
≤

∞∫

−∞

∣∣eiux − 1
∣∣ dF (x),

for all t. Now as u → 0,
∣∣eiux − 1

∣∣ → 0, and
∣∣eiux − 1

∣∣ ≤ 2. The bound on the right tends
to zero as u → 0 by Lebesgue’s dominated convergence theorem (which we quote from measure
theory: see e.g. (Williams 1991), §5.9), giving continuity; the uniformity follows as the bound
holds uniformly in t.
4. (Uniqueness theorem): φ determines the distribution function F uniquely.
Technically, φ is the Fourier-Stieltjes transform of F , and here we are quoting the uniqueness
property of this transform. Were uniqueness not to hold, we would lose information on taking
characteristic functions, and so φ would not be useful.
5. (Continuity theorem): If Xn, X are random variables with distribution functions Fn, F and
characteristic functions φn, φ, then convergence of φn to φ,

φn(t) → φ(t) (n →∞) for all t ∈ IR

is equivalent to convergence in distribution of Xn to X. This result is due to Lévy; see e.g.
(Williams 1991), §18.1.
6. Moments. Suppose X has kth moment: IE|X|k < ∞. Take the Taylor (power-series) expansion
of eitx as far as the kth power term:

eitx = 1 + itx + · · ·+ (itx)k/k! + o
(
tk

)
,
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where ‘o
(
tk

)
’ denotes an error term of smaller order than tk for small k. Now replace x by X,

and take expectations. By linearity, we obtain

φ(t) = IE(eitX) = 1 + itIEX + · · ·+ (it)k

k!
IE(Xk) + e(t),

where the error term e(t) is the expectation of the error terms (now random, as X is random)
obtained above (one for each value X(ω) of X). It is not obvious, but it is true, that e(t) is still
of smaller order than tk for t → 0:

if IE
(
|X|k

)
< ∞, φ(t) = 1 + itIE(X) + . . . +

(it)k

k!
IE

(
Xk

)
+ o

(
tk

)
(t → 0).

We shall need the case k = 2 in dealing with the central limit theorem below.

Examples

1. Standard Normal Distribution,

N(0, 1). For the standard normal density f(x) = 1√
2π

exp{− 1
2x2}, one has, by the process of

‘completing the square’ (familiar from when one first learns to solve quadratic equations!),
∞∫

−∞
etxf(x)dx =

1√
2π

∞∫

−∞
exp

{
tx− 1

2
x2

}
dx

=
1√
2π

∞∫

−∞
exp

{
−1

2
(x− t)2 +

1
2
t2

}
dx

= exp
{

1
2
t2

}
· 1√

2π

∞∫

−∞
exp

{
−1

2
(x− t)2

}
dx.

The second factor on the right is 1 (it has the form of a normal integral). This gives the integral
on the left as exp{1

2 t2}.
Now replace t by it (legitimate by analytic continuation, which we quote from complex analysis,

see e.g. (Burkill and Burkill 1970)). The right becomes exp{− 1
2 t2}. The integral on the left

becomes the characteristic function of the standard normal density – which we have thus now
identified (and will need below in §2.8).

2. General Normal Distribution,

N(µ, σ). Consider the transformation x 7→ µ + σx. Applied to a random variable X, this adds µ
to the mean (a change of location), and multiplies the variance by σ2 (a change of scale). One can
check that if X has the standard normal density above, then µ + σX has density

f(x) =
1

σ
√

2π
exp

{
−1

2
(x− µ)2/σ2

}
,

and characteristic function

IEeit(µ+σX) = exp{iµt}IE
(
e(iσt)X

)
= exp{iµt} exp

{
−1

2
(σt)2

}

= exp
{

iµt− 1
2
σ2t2

}
.

Thus the general normal density and its characteristic function are

f(x) =
1

σ
√

2π
exp

{
−1

2
(x− µ)2/σ2

}
, φ(t) = exp

{
iµt− 1

2
σ2t2

}
.
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3. Poisson Distribution,

P (λ). Here, the probability mass function is

f(k) := IP (X = k) = e−λλk/k!, (k = 0, 1, 2, . . .).

The characteristic function is thus

φ(t) = IE
(
eitX

)
=

∞∑

k=0

e−λλk

k!
· eitk

= e−λ
∞∑

k=0

(λeit)k/k! = e−λ exp{λeit} = exp{−λ(1− eit)}.

A.3 The Central Limit Theorem

Readers of this book will be well aware that
(
1 +

x

n

)n

→ ex (n →∞) ∀x ∈ IR.

This is the formula governing the passage from discrete to continuous compound interest. Invest
one pound (or dollar) for one year at 100x% p.a.; with interest compounded n times p.a., our
capital after one year is (1+ x

n )n. With continuous compounding, our capital after one year is the
exponential ex: exponential growth corresponds to continuously compounded interest.

We need two extensions: the formula still holds with x ∈ IR replaced by a complex number
z ∈ IC: (

1 +
z

n

)n

→ ez (n →∞) ∀z ∈ IC,

and if zn ∈ IC, zn → z,
(
1 +

zn

n

)n

→ ez (n →∞) (zn → z ∈ IC).

As a first illustration of the power of transform methods, we prove the weak law of large
numbers:

Theorem A.3.1 (Weak Law of Large Numbers). If X1, X2, . . . are independent and identi-
cally distributed with mean µ, then

1
n

n∑

i=1

Xi → µ (n →∞) in probability.

Proof. If the Xi have characteristic function φ, then by the moment property of §2.8 with
k = 1,

φ(t) = 1 + iµt + o (t) (t → 0).

Now using the i.i.d. assumption, 1
n

∑n
i=1 Xi has characteristic function

IE

(
exp

{
it · 1

n

n∑
1

Xj

})
= IE

(
n∏

i=1

exp
{

it · 1
n

Xj

})

=
n∏

i=1

IE

(
exp

{
it

n
Xj

})
= (φ(t/n))n

=
(

1 +
iµt

n
+ o (1/n)

)n

→ eiµt (n →∞),
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and eiµt is the characteristic function of the constant µ (for fixed t, o (1/n) is an error term of
smaller order than 1/n as n →∞). By the continuity theorem,

1
n

n∑

i=1

Xi → µ in distribution,

and as µ is constant, this says (see §2.6) that

1
n

n∑
1

Xi → µ in probability.

The main result of this section is the same argument carried one stage further.

Theorem A.3.2 (Central Limit Theorem). If X1, X2, . . . are independent and identically
distributed with mean µ and variance σ2, then with N(0, 1) the standard normal distribution,

√
n

σ

1
n

n∑

i=1

(Xi − µ) =
1√
n

n∑

i=1

(Xi − µ)/σ → N(0, 1) (n →∞) in distribution.

That is, for all x ∈ IR,

IP

(
1√
n

n∑

i=1

(Xi − µ)/σ ≤ x

)
→ Φ(x) :=

1√
2π

x∫

−∞
e−

1
2 y2

dy (n →∞).

Proof. We first centre at the mean. If Xi has characteristic function φ, let Xi − µ have
characteristic function φ0. Since Xi − µ has mean 0 and second moment σ2 = VV ar(Xi) =
IE[(Xi − IEXi)2] = IE[(Xi − µ)2], the case k = 2 of the moment property of §2.7 gives

φ0(t) = 1− 1
2
σ2t2 + o

(
t2

)
(t → 0).

Now
√

n( 1
n

∑n
i=1 Xi − µ)/σ has characteristic function

IE


exp



it ·

√
n

σ


 1

n

n∑

j=1

Xj − µ











= IE




n∏

j=1

exp
{

it(Xj − µ)
σ
√

n

}
 =

n∏

j=1

IE

(
exp

{
it

σ
√

n
(Xj − µ)

})

=
(

φ0

(
t

σ
√

n

))n

=
(

1−
1
2σ2t2

σ2n
+ o

(
1
n

))n

→ e−
1
2 t2 (n →∞),

and e−
1
2 t2 is the characteristic function of the standard normal distribution N(0, 1). The result

follows by the continuity theorem.

Note.

In Theorem A.3.2, we:

(i) centre the Xi by subtracting the mean (to get mean 0);
(ii) scale the resulting Xi − µ by dividing by the standard deviation σ (to get variance 1). Then
if Yi := (Xi − µ)/σ are the resulting standardised variables, 1√

n

∑n
1Yi converges in distribution to

standard normal.
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Example: the Binomial Case.

If each Xi is Bernoulli distributed with parameter p ∈ (0, 1),

IP (Xi = 1) = p, IP (Xi = 0) = q := 1− p

– so Xi has mean p and variance pq - Sn :=
∑n

i=1 Xi is binomially distributed with parameters n
and p:

IP

(
n∑

i=1

Xi = k

)
=

(
n

k

)
pkqn−k =

n!
(n− k)!k!

pkqn−k.

A direct attack on the distribution of 1√
n

∑n
i=1(Xi − p)/

√
pq can be made via

IP

(
a ≤

n∑

i=1

Xi ≤ b

)
=

∑

k:np+a
√

npq≤k≤np+b
√

npq

n!
(n− k)!k!

pkqn−k.

Since n, k and n − k will all be large here, one needs an approximation to the factorials. The
required result is Stirling’s formula of 1730:

n! ∼
√

2πe−nnn+ 1
2 (n →∞)

(the symbol ∼ indicates that the ratio of the two sides tends to 1). The argument can be carried
through to obtain the sum on the right as a Riemann sum (in the sense of the Riemann integral:
§2.2) for

∫ b

a
1√
2π

e−
1
2 x2

dx, whence the result. This, the earliest form of the central limit theorem,
is the de Moivre-Laplace limit theorem (Abraham de Moivre, 1667–1754; P.S. de Laplace, 1749–
1827). The proof of the de-Moivre-Laplace limit theorem sketched above is closely analogous to
the passage from the discrete to the continuous Black-Scholes formula: see §4.6 and §6.4.

Local Limit Theorems.

The central limit theorem as proved above is a global limit theorem: it relates to distributions
and convergence thereof. The de Moivre-Laplace limit theorem above, however, deals directly
with individual probabilities in the discrete case (the sum of a large number of which is shown
to approximate an integral). A limit theorem dealing with densities and convergence thereof in
the density case, or with the discrete analogues of densities – such as the individual probabilities
IP (Sn = k) in the binomial case above – is called a local limit theorem.

Poisson Limit Theorem.

The de Moivre-Laplace limit theorem – convergence of binomial to normal – is only one possible
limiting regime for binomial models. The next most important one has a Poisson limit in place
of a normal one.

Suppose we have a sequence of binomial models B(n, p), where the success probability p = pn

varies with n, in such a way that

npn → λ > 0, (n →∞). (A.1)

Thus pn → 0 – indeed, pn ∼ λ/n. This models a situation where we have a large number n of
Bernoulli trials, each with small probability pn of success, but such that npn, the expected total
number of successes, is ‘neither large nor small, but intermediate’. Binomial models satisfying
condition (A.1) converge to the Poisson model P (λ) with parameter λ > 0.

This result is sometimes called the law of small numbers. The Poisson distribution is widely
used to model statistics of accidents, insurance claims and the like, where one has a large number
n of individuals at risk, each with a small probability pn of generating an accident, insurance claim
etc. (‘success probability’ seems a strange usage here!).



Appendix B

Facts form Probability and
Measure Theory

We will assume that most readers will be familiar with such things from an elementary course in
probability and statistics; for a clear introduction see, e.g. Grimmett and Welsh (1986), or the
first few chapters of ?; Ross (1997), Resnick (2001), Durrett (1999), Ross (1997), Rosenthal (2000)
are also useful.

B.1 Measure

The language of modelling financial markets involves that of probability, which in turn involves
that of measure theory. This originated with Henri Lebesgue (1875-1941), in his thesis, ‘Intégrale,
longueur, aire’ Lebesgue (1902). We begin with defining a measure on IR generalising the intuitive
notion of length.

The length µ(I) of an interval I = (a, b), [a, b], [a, b) or (a, b] should be b−a: µ(I) = b−a. The
length of the disjoint union I =

⋃n
r=1 Ir of intervals Ir should be the sum of their lengths:

µ

(
n⋃

r=1

Ir

)
=

n∑
r=1

µ(Ir) (finite additivity).

Consider now an infinite sequence I1, I2, . . .(ad infinitum) of disjoint intervals. Letting n tend to
∞ suggests that length should again be additive over disjoint intervals:

µ

( ∞⋃
r=1

Ir

)
=

∞∑
r=1

µ(Ir) (countable additivity).

For I an interval, A a subset of length µ(A), the length of the complement I \ A := I ∩ Ac of A
in I should be

µ(I \A) = µ(I)− µ(A) (complementation).

If A ⊆ B and B has length µ(B) = 0, then A should have length 0 also:

A ⊆ B and µ(B) = 0 ⇒ µ(A) = 0 (completeness).

The term ‘countable’ here requires comment. We must distinguish first between finite and infinite
sets; then countable sets (like IN = {1, 2, 3, . . .}) are the ‘smallest’, or ‘simplest’, infinite sets, as
distinct from uncountable sets such as IR = (−∞,∞).

Let F be the smallest class of sets A ⊂ IR containing the intervals, closed under countable
disjoint unions and complements, and complete (containing all subsets of sets of length 0 as sets of
length 0). The above suggests – what Lebesgue showed – that length can be sensibly defined on the

115
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sets F on the line, but on no others. There are others – but they are hard to construct (in technical
language: the axiom of choice, or some variant of it such as Zorn’s lemma, is needed to demonstrate
the existence of non-measurable sets – but all such proofs are highly non-constructive). So: some
but not all subsets of the line have a length. These are called the Lebesgue-measurable sets, and
form the class F described above; length, defined on F , is called Lebesgue measure µ (on the real
line, IR). Turning now to the general case, we make the above rigorous. Let Ω be a set.

Definition B.1.1. A collection A0 of subsets of Ω is called an algebra on Ω if:

(i) Ω ∈ A0,
(ii) A ∈ A0 ⇒ Ac = Ω \A ∈ A0,
(iii) A,B ∈ A0 ⇒ A ∪B ∈ A0.

Using this definition and induction, we can show that an algebra on Ω is a family of subsets
of Ω closed under finitely many set operations.

Definition B.1.2. An algebra A of subsets of Ω is called a σ-algebra on Ω if for any sequence
An ∈ A, (n ∈ IN), we have

∞⋃
n=1

An ∈ A.

Such a pair (Ω,A) is called a measurable space.

Thus a σ-algebra on Ω is a family of subsets of Ω closed under any countable collection of set
operations.

The main examples of σ-algebras are σ-algebras generated by a class C of subsets of Ω, i.e.
σ(C) is the smallest σ-algebra on Ω containing C.

The Borel σ-algebra B = B(IR) is the σ-algebra of subsets of IR generated by the open intervals
(equivalently, by half-lines such as (−∞, x] as x varies in IR.

As our aim is to define measures on collection of sets we now turn to set functions.

Definition B.1.3. Let Ω be a set, A0 an algebra on Ω and µ0 a non-negative set function µ0 :
A0 → [0,∞] such that µ0(∅) = 0. µ0 is called:

(i) additive, if A,B ∈ A0, A ∩B = ∅ ⇒ µ0(A ∪B) = µ0(A) + µ0(B),
(ii) countably additive, if whenever (An)n∈IN is a sequence of disjoint sets in A0 with

⋃
An ∈ A0

then

µ0

( ∞⋃
n=0

An

)
=

∞∑
n=1

µ0(An).

Definition B.1.4. Let (Ω,A) be a measurable space. A countably additive map

µ : A → [0,∞]

is called a measure on (Ω,A). The triple (Ω,A, µ) is called a measure space.

Recall that our motivating example was to define a measure on IR consistent with our geomet-
rical knowledge of length of an interval. That means we have a suitable definition of measure on
a family of subsets of IR and want to extend it to the generated σ-algebra. The measure-theoretic
tool to do so is the Carathéodory extension theorem, for which the following lemma is an inevitable
prerequisite.

Lemma B.1.1. Let Ω be a set. Let I be a π-system on Ω, that is, a family of subsets of Ω closed
under finite intersections: I1, I2 ∈ I ⇒ I1 ∩ I2 ∈ I. Let A = σ(I) and suppose that µ1 and µ2 are
finite measures on (Ω,A) (i.e. µ1(Ω) = µ2(Ω) < ∞) and µ1 = µ2 on I. Then

µ1 = µ2 on A.
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Theorem B.1.1 (Carathéodory Extension Theorem). Let Ω be a set, A0 an algebra on Ω
and A = σ(A0). If µ0 is a countably additive set function on A0, then there exists a measure µ
on (Ω,A) such that

µ = µ0 on A0.

If µ0 is finite, then the extension is unique.

For proofs of the above and further discussion, we refer the reader to Chapter 1 and Appendix
1 of Williams (1991) and the appendix in Durrett (1996).

Returning to the motivating example Ω = IR, we say that A ⊂ IR belongs to the collection of
sets A0 if A can be written as

A = (a1, b1] ∪ . . . ∪ (ar, br],

where r ∈ IN, −∞ ≤ a1 < b1 ≤ . . . ≤ ar < br ≤ ∞. It can be shown that A0 is an algebra and
σ(A0) = B. For A as above define

µ0(A) =
r∑

k=1

(bk − ak).

µ0 is well-defined and countably additive on A0. As intervals belong to A0 our geometric intuition
of length is preserved. Now by Carathéodory’s extension theorem there exists a measure µ on
(Ω,B) extending µ0 on (Ω,A0). This µ is called Lebesgue measure.

With the same approach we can generalise:

(i) the area of rectangles R = (a1, b1)× (a2, b2) – with or without any of its perimeter included –
given by µ(R) = (b1 − a1)× (b2 − a2) to Lebesgue measure on Borel sets in IR2;
(ii) the volume of cuboids C = (a1, b1)× (a2, b2)× (a3, b3) given by

µ(C) = (b1 − a1) · (b2 − a2) · (b3 − a3)

to Lebesgue measure on Borel sets in IR3;
(iii) and similarly in k-dimensional Euclidean space IRk. We start with the formula for a k-
dimensional box,

µ

(
k∏

i=1

(ai, bi)

)
=

k∏

i=1

(bi − ai),

and obtain Lebesgue measure µ, defined on B, in IRk.

We are mostly concerned with a special class of measures:

Definition B.1.5. A measure IP on a measurable space (Ω,A) is called a probability measure if

IP (Ω) = 1.

The triple (Ω,A, IP ) is called a probability space.

Observe that the above lemma and Carathéodory’s extension theorem guarantee uniqueness if
we construct a probability measure using the above procedure. For example the unit cube [0, 1]k

in IRk has (Lebesgue) measure 1. Using Ω = [0, 1]k as the underlying set in the above construction
we find a unique probability (which equals length/area/volume if k = 1/2/3).

If a property holds everywhere except on a set of measure zero, we say it holds almost every-
where (a.e.). If it holds everywhere except on a set of probability zero, we say it holds almost
surely (a.s.) (or, with probability one).

Roughly speaking, one uses addition in countable (or finite) situations, integration in uncount-
able ones. As the key measure-theoretic axiom of countable additivity above concerns addition,
countably infinite situations (such as we meet in discrete time) fit well with measure theory. By
contrast, uncountable situations (such as we meet in continuous time) do not – or at least, are
considerably harder to handle. This is why the discrete-time setting of Chapters 3, 4 is easier than,
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and precedes, the continuous-time setting of Chapters 5, 6. Our strategy is to do as much as pos-
sible to introduce the key ideas – economic, financial and mathematical – in discrete time (which,
because we work with a finite time-horizon, the expiry time T , is actually a finite situation), before
treating the harder case of continuous time.

B.2 Integral

Let (Ω,A) be a measurable space. We want to define integration for a suitable class of real-valued
functions.

Definition B.2.1. Let f : Ω → IR. For A ⊂ IR define f−1(A) = {ω ∈ Ω : f(ω) ∈ A}. f is called
(A-) measurable if

f−1(B) ∈ A for all B ∈ B.

Let µ be a measure on (Ω,A). Our aim now is to define, for suitable measurable functions,
the (Lebesgue) integral with respect to µ. We will denote this integral by

µ(f) =
∫

Ω

fdµ =
∫

Ω

f(ω)µ(dω).

We start with the simplest functions. If A ∈ A the indicator function 1A(ω) is defined by

1A(ω) =
{

1, if ω ∈ A
0, if ω 6∈ A.

Then define µ(1A) = µ(A).
The next step extends the definition to simple functions. A function f is called simple if it is

a finite linear combination of indicators: f =
∑n

i=1 ci1Ai for constants ci and indicator functions
1Ai of measurable sets Ai. One then extends the definition of the integral from indicator functions
to simple functions by linearity:

µ

(
n∑

i=1

ci1Ai

)
:=

n∑

i=1

ciµ(1Ai) =
n∑

i=1

ciµ(Ai),

for constants ci and indicators of measurable sets Ai.
If f is a non-negative measurable function, we define

µ(f) := sup{µ(f0) : f0 simple, f0 ≤ f}.
The key result in integration theory, which we must use here to guarantee that the integral for

non-negative measurable functions is well-defined is:

Theorem B.2.1 (Monotone Convergence Theorem). If (fn) is a sequence of non-negative
measurable functions such that fn is strictly monotonic increasing to a function f (which is then
also measurable), then µ(fn) → µ(f) ≤ ∞.

We quote that we can construct each non-negative measurable f as the increasing limit of a
sequence of simple functions fn:

fn(ω) ↑ f(ω) for all ω ∈ Ω (n →∞), fn simple.

Using the monotone convergence theorem we can thus obtain the integral of f as

µ(f) := lim
n→∞

µ(fn).

Since fn increases in n, so does µ(fn) (the integral is order-preserving), so either µ(fn) increases
to a finite limit, or diverges to ∞. In the first case, we say f is (Lebesgue-) integrable with
(Lebesgue-) integral µ(f) = lim µ(fn).
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Finally if f is a measurable function that may change sign, we split it into its positive and
negative parts, f±:

f+(ω) := max(f(ω), 0), f−(ω) := −min(f(ω), 0),
f(ω) = f+(ω)− f−(ω), |f(ω)| = f+(ω) + f−(ω).

If both f+ and f− are integrable, we say that f is too, and define

µ(f) := µ(f+)− µ(f−).

Thus, in particular, |f | is also integrable, and

µ(|f |) = µ(f+) + µ(f−).

The Lebesgue integral thus defined is, by construction, an absolute integral: f is integrable iff |f |
is integrable. Thus, for instance, the well-known formula

∞∫

0

sinx

x
dx =

π

2

has no meaning for Lebesgue integrals, since
∫∞
1

|sin x|
x dx diverges to +∞ like

∫∞
1

1
xdx. It has to

be replaced by the limit relation

X∫

0

sin x

x
dx → π

2
(X →∞).

The class of (Lebesgue-) integrable functions f on Ω is written L(Ω) or (for reasons explained
below) L1(Ω) – abbreviated to L1 or L.

For p ≥ 1, the Lp space Lp(Ω) on Ω is the space of measurable functions f with Lp-norm

‖f‖p :=




∫

Ω

|f |p dµ




1
p

< ∞.

The case p = 2 gives L2, which is particular important as it is a Hilbert space (Appendix A).
Turning now to the special case Ω = IRk we recall the well-known Riemann integral. Math-

ematics undergraduates are taught the Riemann integral (G.B. Riemann (1826–1866)) as their
first rigorous treatment of integration theory – essentially this is just a rigorisation of the school
integral. It is much easier to set up than the Lebesgue integral, but much harder to manipulate.

For finite intervals [a, b] ,we quote:

(i) for any function f Riemann-integrable on [a, b], it is Lebesgue-integrable to the same value
(but many more functions are Lebesgue integrable);
(ii) f is Riemann-integrable on [a, b] iff it is continuous a.e. on [a, b]. Thus the question, ‘Which
functions are Riemann-integrable?’ cannot be answered without the language of measure theory
– which gives one the technically superior Lebesgue integral anyway.

Suppose that F (x) is a non-decreasing function on IR:

F (x) ≤ F (y) if x ≤ y.

Such functions can have at most countably many discontinuities, which are at worst jumps. We
may without loss redefine F at jumps so as to be right-continuous. We now generalise the starting
points above:

• Measure. We take µ((a, b]) := F (b)− F (a).
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• Integral. We have µ(1(a,b]) = µ((a, b]) = F (b)− F (a).

We may now follow through the successive extension procedures used above. We obtain:

• Lebesgue-Stieltjes measure µF ,

• Lebesgue-Stieltjes integral µF (f) =
∫

fdµF , or even
∫

fdF .

The approach generalises to higher dimensions; we omit further details.
If instead of being monotone non-decreasing, F is the difference of two such functions, F =

F1 − F2, we can define the integrals
∫

fdF1,
∫

fdF2 as above, and then define
∫

fdF =
∫

fd(F1 − F2) :=
∫

fdF1 −
∫

fdF2.

If [a, b] is a finite interval and F is defined on [a, b], a finite collection of points, x0, x1, . . . , xn with
a = x0 < x1 < · · · < xn = b, is called a partition of [a, b], P say. The sum

∑n
i=1 |F (xi)− F (xi−1)|

is called the variation of F over the partition. The least upper bound of this over all partitions P
is called the variation of F over the interval [a, b], V b

a (F ):

V b
a (F ) := sup

P

∑
|F (xi)− F (xi−1)|.

This may be +∞; but if V b
a (F ) < ∞, F is said to be of bounded variation on [a, b], F ∈ BV b

a .
If F is of bounded variation on all finite intervals, F is said to be locally of bounded variation,
F ∈ BVloc; if F is of bounded variation on the real line IR, F is of bounded variation, F ∈ BV .

We quote that the following two properties are equivalent:

(i) F is locally of bounded variation,
(ii) F can be written as the difference F = F1 − F2 of two monotone functions.

So the above procedure defines the integral
∫

fdF when the integrator F is of bounded varia-
tion.

Remark B.2.1. (i) When we pass from discrete to continuous time, we will need to handle
both ‘smooth’ paths and paths that vary by jumps – of bounded variation – and ‘rough’ ones – of
unbounded variation but bounded quadratic variation;
(ii) The Lebesgue-Stieltjes integral

∫
g(x)dF (x) is needed to express the expectation IEg(X), where

X is random variable with distribution function F and g a suitable function.

B.3 Probability

As we remarked in the introduction of this chapter, the mathematical theory of probability can be
traced to 1654, to correspondence between Pascal (1623–1662) and Fermat (1601–1665). However,
the theory remained both incomplete and non-rigorous until the 20th century. It turns out that
the Lebesgue theory of measure and integral sketched above is exactly the machinery needed to
construct a rigorous theory of probability adequate for modelling reality (option pricing, etc.) for
us. This was realised by Kolmogorov (1903-1987), whose classic book of 1933, Grundbegriffe der
Wahrscheinlichkeitsrechnung (Foundations of Probability Theory), Kolmogorov (1933), inaugu-
rated the modern era in probability.

Recall from your first course on probability that, to describe a random experiment mathemat-
ically, we begin with the sample space Ω, the set of all possible outcomes. Each point ω of Ω, or
sample point, represents a possible – random – outcome of performing the random experiment.
For a set A ⊆ Ω of points ω we want to know the probability IP (A) (or Pr(A), pr(A)). We clearly
want

(i) IP (∅) = 0, IP (Ω) = 1,
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(ii) IP (A) ≥ 0 for all A,

(iii) If A1, A2, . . . , An are disjoint, IP (
⋃n

i=1 Ai) =
∑n

i=1 IP (Ai) (finite additivity), which, as
above we will strengthen to

(iii)* If A1, A2 . . . (ad inf.) are disjoint,

IP

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

IP (Ai) (countable additivity).

(iv) If B ⊆ A and IP (A) = 0, then IP (B) = 0 (completeness).

Then by (i) and (iii) (with A = A1, Ω \A = A2),

IP (Ac) = IP (Ω \A) = 1− IP (A).

So the class F of subsets of Ω whose probabilities IP (A) are defined (call such A events) should
be closed under countable, disjoint unions and complements, and contain the empty set ∅ and the
whole space Ω. Therefore F should be a σ-algebra and IP should be defined on F according to
Definition 2.1.5. Repeating this:

Definition B.3.1. A probability space, or Kolmogorov triple, is a triple (Ω,F , IP ) satisfying
Kolmogorov axioms (i),(ii),(iii)*, (iv) above.

A probability space is a mathematical model of a random experiment.
Often we quantify outcomes ω of random experiments by defining a real-valued function X on

Ω, i.e. X : Ω → IR. If such a function is measurable it is called a random variable.

Definition B.3.2. Let (Ω,F , IP ) be a probability space. A random variable (vector) X is a
function X : Ω → IR (X : Ω → IRk) such that X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F for all Borel
sets B ∈ B(IR) (B ∈ B(IRk)).

In particular we have for a random variable X that {ω ∈ Ω : X(ω) ≤ x} ∈ F for all x ∈ IR.
Hence we can define the distribution function FX of X by

FX(x) := IP ({ω : X(ω) ≤ x}).

The smallest σ-algebra containing all the sets {ω : X(ω) ≤ x} for all real x (equivalently,
{X < x}, {X ≥ x}, {X > x}) is called the σ-algebra generated by X, written σ(X). Thus,

X is F −measurable (is a random variable) iff σ(X) ⊆ F .

The events in the σ-algebra generated by X are the events {ω : X(ω) ∈ B}, where B runs through
the Borel σ-algebra on the line. When the (random) value X(ω) is known, we know which of these
events have happened.

Interpretation.

Think of σ(X) as representing what we know when we know X, or in other words the information
contained in X (or in knowledge of X). This is reflected in the following result, due to J.L. Doob,
which we quote:

σ(X) ⊆ σ(Y ) if and only if X = g(Y )

for some measurable function g. For, knowing Y means we know X := g(Y ) – but not vice versa,
unless the function g is one-to-one (injective), when the inverse function g−1 exists, and we can
go back via Y = g−1(X).
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Note.

An extended discussion of generated σ-algebras in the finite case is given in Dothan’s book Dothan
(1990), Chapter 3. Although technically avoidable, this is useful preparation for the general case,
needed for continuous time.

A measure (§2.1) determines an integral (§2.2). A probability measure IP , being a special
kind of measure (a measure of total mass one) determines a special kind of integral, called an
expectation.

Definition B.3.3. The expectation IE of a random variable X on (Ω,F , IP ) is defined by

IEX :=
∫

Ω

XdIP, or
∫

Ω

X(ω)dIP (ω).

The expectation – also called the mean – describes the location of a distribution (and so is
called a location parameter). Information about the scale of a distribution (the corresponding
scale parameter) is obtained by considering the variance

VV ar(X) := IE
[
(X − IE(X))2

]
= IE

(
X2

)− (IEX)2.

If X is real-valued, say, with distribution function F , recall that IEX is defined in your first
course on probability by

IEX :=
∫

xf(x)dx if X has a density f

or if X is discrete, taking values xn(n = 1, 2, . . .) with probability function f(xn)(≥ 0) (
∑

xn
f(xn) =

1),
IEX :=

∑
xnf(xn).

These two formulae are the special cases (for the density and discrete cases) of the general formula

IEX :=

∞∫

−∞
xdF (x)

where the integral on the right is a Lebesgue-Stieltjes integral. This in turn agrees with the
definition above, since if F is the distribution function of X,

∫

Ω

XdIP =

∞∫

−∞
xdF (x)

follows by the change of variable formula for the measure-theoretic integral, on applying the map
X : Ω → IR (we quote this: see any book on measure theory, e.g. Dudley (1989)).

Clearly the expectation operator IE is linear. It even becomes multiplicative if we consider
independent random variables.

Definition B.3.4. Random variables X1, . . . , Xn are independent if whenever Ai ∈ B for i =
1, . . . n we have

IP

(
n⋂

i=1

{Xi ∈ Ai}
)

=
n∏

i=1

IP ({Xi ∈ Ai}).

Using Lemma B.1.1 we can give a more tractable condition for independence:

Lemma B.3.1. In order for X1, . . . , Xn to be independent it is necessary and sufficient that for
all x1, . . . xn ∈ (−∞,∞],

IP

(
n⋂

i=1

{Xi ≤ xi}
)

=
n∏

i=1

IP ({Xi ≤ xi}).
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Now using the usual measure-theoretic steps (going from simple to integrable functions) it is
easy to show:

Theorem B.3.1 (Multiplication Theorem). If X1, . . . , Xn are independent and IE |Xi| <
∞, i = 1, . . . , n, then

IE

(
n∏

i=1

Xi

)
=

n∏

i=1

IE(Xi).

We now review the distributions we will mainly use in our models of financial markets.

Examples.

(i) Bernoulli distribution. Recall our arbitrage-pricing example from §1.4. There we were given a
stock with price S(0) at time t = 0. We assumed that after a period of time ∆t the stock price
could have only one of two values, either S(∆t) = euS(0) with probability p or S(∆t) = edS(0)
with probability 1−p (u, d ∈ IR). Let R(∆t) = r(1) be a random variable modelling the logarithm
of the stock return over the period [0, ∆t]; then

IP (r(1) = u) = p and IP (r(1) = d) = 1− p.

We say that r(1) is distributed according to a Bernoulli distribution. Clearly IE(r(1)) = up +
d(1− p) and VV ar(r(1)) = u2p + d2(1− p)− (IEX)2.

The standard case of a Bernoulli distribution is given by choosing u = 1, d = 0 (which is not a
very useful choice in financial modelling).

(ii) Binomial distribution. If we consider the logarithm of the stock return over n periods (of
equal length), say over [0, T ], then subdividing into the periods 1, . . . , n we have

R(T ) = log
[
S(T )
S(0)

]
= log

[
S(T )

S(T −∆t)
· · · S(∆t)

S(0)

]

= log
[

S(T )
S(T −∆t)

]
+ . . . + log

[
S(∆t)
S(0)

]
= r(n) + . . . + r(1).

Assuming that r(i), i = 1, . . . , n are independent and each r(i) is Bernoulli distributed as above
we have that R(T ) =

∑n
i=1 r(i) is binomially distributed. Linearity of the expectation operator

and independence yield IE(R(T )) =
∑n

i=1 IE(r(i)) and VV ar(R(T )) =
∑n

i=1 VV ar(r(i)).
Again for the standard case one would use u = 1, d = 0. The shorthand notation for a binomial

random variable X is then X ∼ B(n, p) and we can compute

IP (X = k) =
(

n

k

)
pk(1− p)(n−k), IE(X) = np, VV ar(X) = np(1− p).

(iii) Normal distribution. As we will show in the sequel the limit of a sequence of appropriate
normalised binomial distributions is the (standard) normal distribution. We say a random variable
X is normally distributed with parameters µ, σ2, in short X ∼ N(µ, σ2), if X has density function

fµ,σ2(x) =
1√
2πσ

exp

{
−1

2

(
x− µ

σ

)2
}

.

One can show that IE(X) = µ and VV ar(X) = σ2, and thus a normally distributed random variable
is fully described by knowledge of its mean and variance.

Returning to the above example, one of the key results of this text will be that the limiting
model of a sequence of financial markets with one-period asset returns modelled by a Bernoulli
distribution is a model where the distribution of the logarithms of instantaneous asset returns is
normal. That means S(t+∆t)/S(t) is lognormally distributed (i.e. log(S(t+∆t)/S(t)) is normally
distributed). Although rejected by many empirical studies (see Eberlein and Keller (1995) for a
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recent overview), such a model seems to be the standard in use among financial practitioners (and
we will call it the standard model in the following). The main arguments against using normally
distributed random variables for modelling log-returns (i.e. log-normal distributions for returns)
are asymmetry and (semi-) heavy tails. We know that distributions of financial asset returns are
generally rather close to being symmetric around zero, but there is a definite tendency towards
asymmetry. This may be explained by the fact that the markets react differently to positive as
opposed to negative information (see Shephard (1996) §1.3.4). Since the normal distribution is
symmetric it is not possible to incorporate this empirical fact in the standard model. Financial
time series also suggest modelling by probability distributions whose densities behave for x → ±∞
as

|x|ρ exp{−σ |x|}
with ρ ∈ IR, σ > 0. This means that we should replace the normal distribution with a distribution
with heavier tails. Such a model like this would exhibit higher probabilities of extreme events
and the passage from ordinary observations (around the mean) to extreme observations would
be more sudden. Among suggested (classes of) distributions to be used to address these facts is
the class of hyperbolic distributions (see Eberlein and Keller (1995) and §2.12 below), and more
general distributions of normal inverse Gaussian type (see Barndorff-Nielsen (1998), Rydberg
(1996), Rydberg (1997)) appear to be very promising.

(iv) Poisson distribution. Sometimes we want to incorporate in our model of financial markets
the possibility of sudden jumps. Using the standard model we model the asset price process by a
continuous stochastic process, so we need an additional process generating the jumps. To do this
we use point processes in general and the Poisson process in particular. For a Poisson process the
probability of a jump (and no jump respectively) during a small interval ∆t are approximately

IP (ν(1) = 1) ≈ λ∆t and IP (ν(1) = 0) ≈ 1− λ∆t,

where λ is a positive constant called the rate or intensity. Modelling small intervals in such a way
we get for the number of jumps N(T ) = ν(1) + . . . + ν(n) in the interval [0, T ] the probability
function

IP (N(T ) = k) =
e−λT (λT )k

k!
, k = 0, 1, . . .

and we say the process N(T ) has a Poisson distribution with parameter λT . We can show
IE(N(T )) = λT and VV ar(N(T )) = λT .

Glossary.

Table B.1 summarises the two parallel languages, measure-theoretic and probabilistic, which we
have established.

Measure Probability

Integral Expectation
Measurable set Event
Measurable function Random variable
Almost-everywhere (a.e.) Almost-surely (a.s.)

Table B.1: Measure-theoretic and probabilistic languages

B.4 Equivalent Measures and Radon-Nikodým Derivatives

Given two measures IP and QQ defined on the same σ-algebra F , we say that IP is absolutely
continuous with respect to QQ, written

IP << QQ
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if IP (A) = 0, whenever QQ(A) = 0, A ∈ F . We quote from measure theory the vitally important
Radon-Nikodým theorem:

Theorem B.4.1 (Radon-Nikodým). IP << QQ iff there exists a (F-) measurable function f
such that

IP (A) =
∫

A

fdQQ ∀A ∈ F .

(Note that since the integral of anything over a null set is zero, any IP so representable is
certainly absolutely continuous with respect to QQ – the point is that the converse holds.)

Since IP (A) =
∫

A
dIP , this says that

∫
A

dIP =
∫

A
fdQQ for all A ∈ F . By analogy with the

chain rule of ordinary calculus, we write dIP/dQQ for f ; then
∫

A

dIP =
∫

A

dIP

dQQ
dQQ ∀A ∈ F .

Symbolically,

if IP << QQ, dIP =
dIP

dQQ
dQQ.

The measurable function (random variable) dIP/dQQ is called the Radon-Nikodým derivative (RN-
derivative) of IP with respect to QQ.

If IP << QQ and also QQ << IP , we call IP and QQ equivalent measures, written IP ∼ QQ. Then
dIP/dQQ and dQQ/dIP both exist, and

dIP

dQQ
= 1/

dQQ

dIP
.

For IP ∼ QQ, IP (A) = 0 iff QQ(A) = 0: IP and QQ have the same null sets. Taking negations:
IP ∼ QQ iff IP,QQ have the same sets of positive measure. Taking complements: IP ∼ QQ iff IP,QQ
have the same sets of probability one (the same a.s. sets). Thus the following are equivalent:

IP ∼ QQ iff IP,QQ have the same null sets,
iff IP,QQ have the same a.s. sets,
iff IP,QQ have the same sets of positive measure.

Far from being an abstract theoretical result, the Radon-Nikodým theorem is of key practical
importance, in two ways:

(a) It is the key to the concept of conditioning (§2.5, §2.6 below), which is of central importance
throughout,
(b) The concept of equivalent measures is central to the key idea of mathematical finance, risk-
neutrality, and hence to its main results, the Black-Scholes formula, fundamental theorem of asset
pricing, etc. The key to all this is that prices should be the discounted expected values under an
equivalent martingale measure. Thus equivalent measures, and the operation of change of measure,
are of central economic and financial importance. We shall return to this later in connection with
the main mathematical result on change of measure, Girsanov’s theorem (see §5.7).

B.5 Conditional expectation

For basic events define

IP (A|B) := IP (A ∩B)/IP (B) if IP (B) > 0. (B.1)

From this definition, we get the multiplication rule

IP (A ∩B) = IP (A|B)IP (B).
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Using the partition equation IP (B) =
∑

n IP (B|An)IP (An) with (An) a finite or countable partition
of Ω, we get the Bayes rule

IP (Ai|B) =
IP (Ai)IP (B|Ai)∑
j IP (Aj)IP (B|Aj)

.

We can always write IP (A) = IE(1A) with 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0 otherwise. Then
the above can be written

IE(1A|B) =
IE(1A1B)

IP (B)
(B.2)

This suggest defining, for suitable random variables X, the IP -average of X over B as

IE(X|B) =
IE(X1B)

IP (B)
. (B.3)

Consider now discrete random variables X and Y . Assume X takes values x1, . . . , xm with
probabilities f1(xi) > 0, Y takes values y1, . . . , yn with probabilities f2(yj) > 0, while the vector
(X, Y ) takes values (xi, yj) with probabilities f(xi, yj) > 0. Then the marginal distributions
are

f1(xi) =
n∑

j=1

f(xi, yj) and f2(yj) =
m∑

i=1

f(xi, yj).

We can use the standard definition above for the events {Y = yj} and {X = xi} to get

IP (Y = yj |X = xi) =
IP (X = xi, Y = yj)

IP (X = xi)
=

f(xi, yj)
f1(xi)

.

Thus conditional on X = xi (given the information X = xi), Y takes on the values y1, . . . , yn with
(conditional) probabilities

fY |X(yj |xi) =
f(xi, yj)
f1(xi)

.

So we can compute its expectation as usual:

IE(Y |X = xi) =
∑

j

yjfY |X(yj |xi) =

∑
j yjf(xi, yj)

f1(xi)
.

Now define the random variable Z = IE(Y |X), the conditional expectation of Y given X, as
follows:

if X(ω) = xi, then Z(ω) = IE(Y |X = xi) = zi (say)

Observe that in this case Z is given by a ’nice’ function of X. However, a more abstract property
also holds true. Since Z is constant on the the sets {X = xi} it is σ(X)-measurable (these sets
generate the σ-algebra). Furthermore

∫

{X=xi}

ZdIP = ziIP (X = xi) =
∑

j

yjfY |X(yj |xi)IP (X = xi)

=
∑

j

yjIP (Y = yj ; X = xi) =
∫

{X=xi}

Y dIP.

Since the {X = xi} generate σ(X), this implies
∫

G

ZdIP =
∫

G

Y dIP ∀ G ∈ σ(X).
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Density case. If the random vector (X, Y ) has density f(x, y), then X has (marginal) density
f1(x) :=

∫∞
−∞ f(x, y)dy, Y has (marginal) density f2(y) :=

∫∞
−∞ f(x, y)dx. The conditional density

of Y given X = x is:

fY |X(y|x) :=
f(x, y)
f1(x)

.

Its expectation is

IE(Y |X = x) =

∞∫

−∞
yfY |X(y|x)dy =

∫∞
−∞ yf(x, y)dy

f1(x)
.

So we define

c(x) =

{
IE(Y |X = x) if f1(x) > 0

0 if f1(x) = 0,

and call c(X) the conditional expectation of Y given X, denoted by IE(Y |X). Observe that on
sets with probability zero (i.e {ω : X(ω) = x; f1(x) = 0}) the choice of c(x) is arbitrary, hence
IE(Y |X) is only defined up to a set of probability zero; we speak of different versions in such cases.
With this definition we again find

∫

G

c(X)dIP =
∫

G

Y dIP ∀ G ∈ σ(X).

Indeed, for sets G with G = {ω : X(ω) ∈ B} with B a Borel set, we find by Fubini’s theorem

∫

G

c(X)dIP =

∞∫

−∞
1B(x)c(x)f1(x)dx

=

∞∫

−∞
1B(x)f1(x)

∞∫

−∞
yfY |X(y|x)dydx

=

∞∫

−∞

∞∫

−∞
1B(x)yf(x, y)dydx =

∫

G

Y dIP.

Now these sets G generate σ(X) and by a standard technique (the π-systems lemma, see Williams
(2001), §2.3) the claim is true for all G ∈ σ(X).

Example. Bivariate Normal Distribution,

N(µ1, µ2, σ
2
1 , σ2

2 , ρ).
IE(Y |X = x) = µ2 + ρ

σ2

σ1
(x− µ1),

the familiar regression line of statistics (linear model) – see Exercise 2.6.
General case. Here, we follow Kolmogorov’s construction using the Radon-Nikodým theorem.

Suppose that G is a sub-σ-algebra of F , G ⊂ F . If Y is a non-negative random variable with
IEY < ∞, then

QQ(G) :=
∫

G

Y dIP (G ∈ G)

is non-negative, σ-additive – because
∫

G

Y dIP =
∑

n

∫

Gn

Y dIP

if G = ∪nGn, Gn disjoint – and defined on the σ-algebra G, so it is a measure on G.



APPENDIX B. FACTS FORM PROBABILITY AND MEASURE THEORY 128

If IP (G) = 0, then QQ(G) = 0 also (the integral of anything over a null set is zero), so QQ << IP .
By the Radon-Nikodým theorem, there exists a Radon-Nikodým derivative of QQ with respect

to IP on G, which is G-measurable. Following Kolmogorov, we call this Radon-Nikodým derivative
the conditional expectation of Y given (or conditional on) G, IE(Y |G), whose existence we now
have established. For Y that changes sign, split into Y = Y + − Y −, and define IE(Y |G) :=
IE(Y +|G)− IE(Y −|G). We summarize:

Definition B.5.1. Let Y be a random variable with IE(|Y |) < ∞ and G be a sub-σ-algebra of F .
We call a random variable Z a version of the conditional expectation IE(Y |G) of Y given G, and
write Z = IE(Y |G), a.s., if

(i) Z is G-measurable;

(ii) IE(|Z|) < ∞;

(iii) for every set G in G, we have
∫

G

Y dIP =
∫

G

ZdIP ∀G ∈ G. (B.4)

Notation. Suppose G = σ(X1, . . . , Xn). Then

IE(Y |G) = IE (Y |σ(X1, . . . , Xn)) =: IE(Y |X1, . . . , Xn),

and one can compare the general case with the motivating examples above.
To see the intuition behind conditional expectation, consider the following situation. Assume

an experiment has been performed, i.e. ω ∈ Ω has been realized. However, the only information we
have is the set of values X(ω) for every G-measurable random variable X. Then Z(ω) = IE(Y |G)(ω)
is the expected value of Y (ω) given this information.

We used the traditional approach to define conditional expectation via the Radon-Nikodým
theorem. Alternatively, one can use Hilbert space projection theory (Neveu (1975) and Jacod and
Protter (2000) follow this route). Indeed, for Y ∈ L2(Ω,F , IP ) one can show that the conditional
expectation Z = IE(Y |G) is the least-squares-best G-measurable predictor of Y : amongst all
G-measurable random variables it minimises the quadratic distance, i.e.

IE[(Y − IE(Y |G))2] = min{IE[(Y −X)2] : X G −measurable}.

Note.

1. To check that something is a conditional expectation: we have to check that it integrates the
right way over the right sets (i.e., as in (B.4)).
2. From (B.4): if two things integrate the same way over all sets B ∈ G, they have the same
conditional expectation given G.
3. For notational convenience, we shall pass between IE(Y |G) and IEGY at will.
4. The conditional expectation thus defined coincides with any we may have already encountered –
in regression or multivariate analysis, for example. However, this may not be immediately obvious.
The conditional expectation defined above – via σ-algebras and the Radon-Nikodým theorem – is
rightly called by Williams ((Williams 1991), p.84) ‘the central definition of modern probability’.
It may take a little getting used to. As with all important but non-obvious definitions, it proves
its worth in action: see §2.6 below for properties of conditional expectations, and Chapter 3 for
its use in studying stochastic processes, particularly martingales (which are defined in terms of
conditional expectations).

We now discuss the fundamental properties of conditional expectation. From the definition
linearity of conditional expectation follows from the linearity of the integral. Further properties
are given by

Proposition B.5.1. 1. G = {∅, Ω}, IE(Y |{∅, Ω}) = IEY.
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2. If G = F , IE(Y |F) = Y IP − a.s..

3. If Y is G-measurable, IE(Y |G) = Y IP − a.s..

4. Positivity. If X ≥ 0, then IE(X|G) ≥ 0 IP − a.s..

5. Taking out what is known. If Y is G-measurable and bounded, IE(Y Z|G) = Y IE(Z|G) IP −
a.s..

6. Tower property. If G0 ⊂ G, IE[IE(Y |G)|G0] = IE[Y |G0] a.s..

7. Conditional mean formula. IE[IE(Y |G)] = IEY IP − a.s.

8. Role of independence. If Y is independent of G, IE(Y |G) = IEY a.s.

9. Conditional Jensen formula. If c : IR → IR is convex, and IE|c(X)| < ∞, then

IE(c(X)|G) ≥ c (IE(X|G)) .

Proof. 1. Here G = {∅, Ω} is the smallest possible σ-algebra (any σ-algebra of subsets of
Ω contains ∅ and Ω), and represents ‘knowing nothing’. We have to check (B.4) for G = ∅ and
G = Ω. For G = ∅ both sides are zero; for G = Ω both sides are IEY .

2. Here G = F is the largest possible σ-algebra, and represents ‘knowing everything’. We have
to check (B.4) for all sets G ∈ F . The only integrand that integrates like Y over all sets is Y
itself, or a function agreeing with Y except on a set of measure zero.
Note. When we condition on F (‘knowing everything’), we know Y (because we know everything).
There is thus no uncertainty left in Y to average out, so taking the conditional expectation
(averaging out remaining randomness) has no effect, and leaves Y unaltered.

3. Recall that Y is always F-measurable (this is the definition of Y being a random variable).
For G ⊂ F , Y may not be G-measurable, but if it is, the proof above applies with G in place of F .
Note. To say that Y is G-measurable is to say that Y is known given G – that is, when we are
conditioning on G. Then Y is no longer random (being known when G is given), and so counts as
a constant when the conditioning is performed.

4. Let Z be a version of IE(X|G). If IP (Z < 0) > 0, then for some n, the set

G := {Z < −n−1} ∈ G and IP ({Z < −n−1}) > 0.

Thus
0 ≤ IE(X1G) = IE(Z1G) < −n−1IP (G) < 0,

which contradicts the positivity of X.
5. First, consider the case when Y is discrete. Then Y can be written as

Y =
N∑

n=1

bn1Bn ,

for constants bn and events Bn ∈ G. Then for any B ∈ G, B ∩ Bn ∈ G also (as G is a σ-algebra),
and using linearity and (B.4):

∫

B

Y IE(Z|G)dIP =
∫

B

(
N∑

n=1

bn1Bn

)
IE(Z|G)dIP =

N∑
n=1

bn

∫

B∩Bn

IE(Z|G)dIP

=
N∑

n=1

bn

∫

B∩Bn

ZdIP =
∫

B

N∑
n=1

bn1BnZdIP

=
∫

B

Y ZdIP.
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Since this holds for all B ∈ G, the result holds by (B.4).
For the general case, we approximate to a general random variable Y by a sequence of discrete

random variables Yn, for each of which the result holds as just proved. We omit details of the
proof here, which involves the standard approximation steps based on the monotone convergence
theorem from measure theory (see e.g. (Williams 1991), p.90, proof of (j)). We are thus left to
show the IE(|ZY |) < ∞, which follows from the assumption that Y is bounded and Z ∈ L1.

6. IEG0IEGY is G0-measurable, and for C ∈ G0 ⊂ G, using the definition of IEG0 , IEG :
∫

C

IEG0 [IEGY ]dIP =
∫

C

IEGY dIP =
∫

C

Y dIP.

So IEG0 [IEGY ] satisfies the defining relation for IEG0Y . Being also G0-measurable, it is IEG0Y (a.s.).
We also have:

6‘. If G0 ⊂ G, IE[IE(Y |G0)|G] = IE[Y |G0] a.s..
Proof. IE[Y |G0] is G0-measurable, so G-measurable as G0 ⊂ G, so IE[.|G] has no effect on it, by

3.

Note.

6, 6‘ are the two forms of the iterated conditional expectations property. When conditioning on two
σ-algebras, one larger (finer), one smaller (coarser), the coarser rubs out the effect of the finer,
either way round. This may be thought of as the coarse-averaging property: we shall use this
term interchangeably with the iterated conditional expectations property (Williams (1991) uses
the term tower property).

7. Take G0 = {∅, Ω} in 6. and use 1.
8. If Y is independent of G, Y is independent of 1B for every B ∈ G. So by (B.4) and linearity,

∫

B

IE(Y |G)dIP =
∫

B

Y dIP =
∫

Ω

1BY dIP

= IE(1BY ) = IE(1B)IE(Y ) =
∫

B

IEY dIP,

using the multiplication theorem for independent random variables. Since this holds for all B ∈ G,
the result follows by (B.4).

9. Recall (see e.g. Williams (1991), §6.6a, §9.7h, §9.8h), that for every convex function there
exists a countable sequence ((an, bn)) of points in IR2 such that

c(x) = sup
n

(anx + bn), x ∈ IR.

For each fixed n we use 4. to see from c(X) ≥ anX + bn that

IE[c(X)|G] ≥ anIE(X|G) + bn.

So,
IE[c(X)|G] ≥ sup

n
(anIE(X|G) + bn) = c (IE(X|G)) .

Remark B.5.1. If in 6, 6′ we take G = G0, we obtain:

IE[IE(X|G)|G] = IE(X|G).

Thus the map X → IE(X|G) is idempotent: applying it twice is the same as applying it once.
Hence we may identify the conditional expectation operator as a projection.
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B.6 Modes of Convergence

So far, we have dealt with one probability measure – or its expectation operator – at a time.
We shall, however, have many occasions to consider a whole sequence of them, converging (in a
suitable sense) to some limiting probability measure. Such situations arise, for example, whenever
we approximate a financial model in continuous time (such as the continuous-time Black-Scholes
model of §6.2) by a sequence of models in discrete time (such as the discrete-time Black-Scholes
model of §4.6).

In the stochastic-process setting – such as the passage from discrete to continuous Black-Scholes
models mentioned above – we need concepts beyond those we have to hand, which we develop
later. We confine ourselves here to setting out what we need to discuss convergence of random
variables, in the various senses that are useful.

The first idea that occurs to one is to use the ordinary convergence concept in this new setting,
of random variables: then if Xn, X are random variables,

Xn → X (n →∞)

would be taken literally – as if the Xn, X were non-random. For instance, if Xn is the observed
frequency of heads in a long series of n independent tosses of a fair coin, X = 1/2 the expected
frequency, then the above in this case would be the man-in-the-street’s idea of the ‘law of averages’.
It turns out that the above statement is false in this case, taken literally: some qualification is
needed. However, the qualification needed is absolutely the minimal one imaginable: one merely
needs to exclude a set of probability zero – that is, to assert convergence on a set of probability
one (‘almost surely’), rather than everywhere.

Definition B.6.1. If Xn, X are random variables, we say Xn converges to X almost surely –

Xn → X (n →∞) a.s.

– if Xn → X with probability one – that is, if

IP ({ω : Xn(ω) → X(ω) as n →∞}) = 1.

The loose idea of the ‘law of averages’ has as its precise form a statement on convergence almost
surely. This is Kolmogorov’s strong law of large numbers (see e.g. (Williams 1991), §12.10), which
is quite difficult to prove.

Weaker convergence concepts are also useful: they may hold under weaker conditions, or they
may be easier to prove.

Definition B.6.2. If Xn, X are random variables, we say that Xn converges to X in probability
-

Xn → X (n →∞) in probability

- if, for all ε > 0,
IP ({ω : |Xn(ω)−X(ω)| > ε}) → 0 (n →∞).

It turns out that convergence almost surely implies convergence in probability, but not in gen-
eral conversely. Thus almost-sure convergence is a stronger convergence concept than convergence
in probability. This comparison is reflected in the form the ‘law of averages’ takes for convergence
in probability: this is called the weak law of large numbers, which as its name implies is a weaker
form of the strong law of large numbers. It is correspondingly much easier to prove: indeed, we
shall prove it in §2.8 below.

Recall the Lp-spaces of pth-power integrable functions (§2.2). We similarly define the Lp-spaces
of pth-power integrable random variables: if p ≥ 1 and X is a random variable with

‖X‖p := (IE|X|p)1/p < ∞,
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we say that X ∈ Lp (or Lp(Ω,F , IP ) to be precise). For Xn, X ∈ Lp, there is a natural convergence
concept: we say that Xn converges to X in Lp, or in pth mean,

Xn → X in Lp,

if
‖Xn −X‖p → 0 (n →∞),

that is, if
IE(|Xn −X|p) → 0 (n →∞).

The cases p = 1, 2 are particularly important: if Xn → X in L1, we say that Xn → X in mean;
if Xn → X in L2 we say that Xn → X in mean square. Convergence in pth mean is not directly
comparable with convergence almost surely (of course, we have to restrict to random variables in
Lp for the comparison even to be meaningful): neither implies the other. Both, however, imply
convergence in probability.

All the modes of convergence discussed so far involve the values of random variables. Often,
however, it is only the distributions of random variables that matter. In such cases, the natural
mode of convergence is the following:

Definition B.6.3. We say that random variables Xn converge to X in distribution if the distri-
bution functions of Xn converge to that of X at all points of continuity of the latter:

Xn → X in distribution

if
IP ({Xn ≤ x}) → IP ({X ≤ x}) (n →∞)

for all points x at which the right-hand side is continuous.

The restriction to continuity points x of the limit seems awkward at first, but it is both natural
and necessary. It is also quite weak: note that the function x 7→ IP ({X ≤ x}), being monotone in
x, is continuous except for at most countably many jumps. The set of continuity points is thus
uncountable: ‘most’ points are continuity points.

Convergence in distribution is (by far) the weakest of the modes of convergence introduced so
far: convergence in probability implies convergence in distribution, but not conversely. There is,
however, a partial converse (which we shall need in §2.8): if the limit X is constant (non-random),
convergence in probability and in distribution are equivalent.

Weak Convergence.

If IPn, IP are probability measures, we say that

IPn → IP (n →∞) weakly

if ∫
fdIPn →

∫
fdIP (n →∞) (B.5)

for all bounded continuous functions f . This definition is given a full-length book treatment in
(Billingsley 1968), and we refer to this for background and details. For ordinary (real-valued)
random variables, weak convergence of their probability measures is the same as convergence
in distribution of their distribution functions. However, the weak-convergence definition above
applies equally, not just to this one-dimensional case, or to the finite-dimensional (vector-valued)
setting, but also to infinite-dimensional settings such as arise in convergence of stochastic processes.
We shall need such a framework in the passage from discrete- to continuous-time Black-Scholes
models.



Appendix C

Stochastic Processes in Discrete
Time

C.1 Information and Filtrations

Access to full, accurate, up-to-date information is clearly essential to anyone actively engaged in
financial activity or trading. Indeed, information is arguably the most important determinant
of success in financial life. Partly for simplicity, partly to reflect the legislation and regulations
against insider trading, we shall confine ourselves to the situation where agents take decisions on
the basis of information in the public domain, and available to all. We shall further assume that
information once known remains known – is not forgotten – and can be accessed in real time.

In reality, of course, matters are more complicated. Information overload is as much of a danger
as information scarcity. The ability to retain information, organise it, and access it quickly, is one
of the main factors which will discriminate between the abilities of different economic agents to
react to changing market conditions. However, we restrict ourselves here to the simplest possible
situation and do not differentiate between agents on the basis of their information-processing
abilities. Thus as time passes, new information becomes available to all agents, who continually
update their information. What we need is a mathematical language to model this information
flow, unfolding with time. This is provided by the idea of a filtration; we outline below the elements
of this theory that we shall need.

The Kolmogorov triples (Ω,F , P ), and the Kolmogorov conditional expectations IE(X|B), give
us all the machinery we need to handle static situations involving randomness. To handle dynamic
situations, involving randomness which unfolds with time, we need further structure.

We may take the initial, or starting, time as t = 0. Time may evolve discretely, or continuously.
We postpone the continuous case to Chapter 5; in the discrete case, we may suppose time evolves
in integer steps, t = 0, 1, 2, . . . (say, stock-market quotations daily, or tick data by the second).
There may be a final time T , or time horizon, or we may have an infinite time horizon (in the
context of option pricing, the time horizon T is the expiry time).

We wish to model a situation involving randomness unfolding with time. As above, we suppose,
for simplicity, that information is never lost (or forgotten): thus, as time increases we learn more.
We recall from Chapter 2 that σ-algebras represent information or knowledge. We thus need a
sequence of σ-algebras {Fn : n = 0, 1, 2, . . .}, which are increasing:

Fn ⊂ Fn+1 (n = 0, 1, 2, . . .),

with Fn representing the information, or knowledge, available to us at time n. We shall always
suppose all σ-algebras to be complete (this can be avoided, and is not always appropriate, but it
simplifies matters and suffices for our purposes). Thus F0 represents the initial information (if
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there is none, F0 = {∅,Ω}, the trivial σ-algebra). On the other hand,

F∞ := lim
n→∞

Fn = σ

(⋃
n

Fn

)

represents all we ever will know (the ‘Doomsday σ-algebra’). Often, F∞ will be F (the σ-algebra
from Chapter 2, representing ‘knowing everything’). But this will not always be so; see e.g.
Williams (1991), §15.8 for an interesting example. Such a family IF := {Fn : n = 0, 1, 2, . . .}
is called a filtration; a probability space endowed with such a filtration, {Ω, IF,F , P} is called
a stochastic basis or filtered probability space. These definitions are due to P. A. Meyer of
Strasbourg; Meyer and the Strasbourg (and more generally, French) school of probabilists have
been responsible for the ‘general theory of (stochastic) processes’, and for much of the progress
in stochastic integration, since the 1960s; see e.g. Dellacherie and Meyer (1978), Dellacherie and
Meyer (1982), Meyer (1966), Meyer (1976).

For the special case of a finite state space Ω = {ω1, . . . , ωn} and a given σ-algebra F on Ω
(which in this case is just an algebra) we can always find a unique finite partition P = {A1, . . . , Al}
of Ω, i.e. the sets Ai are disjoint and

⋃l
i=1 Ai = Ω, corresponding to F . A filtration IF therefore

corresponds to a sequence of finer and finer partitions Pn. At time t = 0 the agents only know that
some event ω ∈ Ω will happen, at time T < ∞ they know which specific event ω∗ has happened.
During the flow of time the agents learn the specific structure of the (σ-) algebras Fn, which means
they learn the corresponding partitions P. Having the information in Fn revealed is equivalent to
knowing in which A

(n)
i ∈ Pn the event ω∗ is. Since the partitions become finer the information on

ω∗ becomes more detailed with each step.
Unfortunately this nice interpretation breaks down as soon as Ω becomes infinite. It turns

out that the concept of filtrations rather than that of partitions is relevant for the more general
situations of infinite Ω, infinite T and continuous-time processes.

C.2 Discrete-Parameter Stochastic Processes

The word ‘stochastic’ (derived from the Greek) is roughly synonymous with ‘random’. It is perhaps
unfortunate that usage favours ‘stochastic process’ rather than the simpler ‘random process’, but
as it does, we shall follow it.

We need a framework which can handle dynamic situations, in which time evolves, and in
which new information unfolds with time. In particular, we need to be able to speak in terms of
‘the information available at time n’, or, ‘what we know at time n’. Further, we need to be able to
increase n – thereby increasing the information available as new information (typically, new price
information) comes in, and talk about the information flow over time. One has a clear mental
picture of what is meant by this – there is no conceptual difficulty. However, what is needed
is a precise mathematical construct, which can be conveniently manipulated - perhaps in quite
complicated ways – and yet which bears the above heuristic meaning. Now ‘information’ is not
only an ordinary word, but even a technical term in mathematics – many books have been written
on the subject of information theory. However, information theory in this sense is not what we
need: for us, the emphasis is on the flow of information, and how to model and describe it. With
this by way of motivation, we proceed to give some of the necessary definitions.

A stochastic process X = {Xn : n ∈ I} is a family of random variables, defined on some
common probability space, indexed by an index-set I. Usually (always in this book), I represents
time (sometimes I represents space, and one calls X a spatial process). Here, I = {0, 1, 2, . . . , T}
(finite horizon) or I = {0, 1, 2, . . .} (infinite horizon). The (stochastic) process X = (Xn)∞n=0 is
said to be adapted to the filtration IF = (Fn)∞n=0 if

Xn is Fn −measurable for all n.

So if X is adapted, we will know the value of Xn at time n. If

Fn = σ(X0, X1, . . . , Xn)
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we call (Fn) the natural filtration of X. Thus a process is always adapted to its natural filtration.
A typical situation is that

Fn = σ(W0,W1, . . . , Wn)

is the natural filtration of some process W = (Wn). Then X is adapted to IF = (Fn), i.e. each
Xn is Fn- (or σ(W0, · · · ,Wn)-) measurable, iff

Xn = fn(W0,W1, . . . , Wn)

for some measurable function fn (non-random) of n + 1 variables.

Notation.

For a random variable X on (Ω,F , IP ), X(ω) is the value X takes on ω (ω represents the ran-
domness). For a stochastic process X = (Xn), it is convenient (e.g., if using suffixes, ni say) to
use Xn, X(n) interchangeably, and we shall feel free to do this. With ω displayed, these become
Xn(ω), X(n, ω), etc.

The concept of a stochastic process is very general – and so very flexible – but it is too general
for useful progress to be made without specifying further structure or further restrictions. There
are two main types of stochastic process which are both general enough to be sufficiently flexible
to model many commonly encountered situations, and sufficiently specific and structured to have
a rich and powerful theory. These two types are Markov processes and martingales. A Markov
process models a situation in which where one is, is all one needs to know when wishing to predict
the future – how one got there provides no further information. Such a ‘lack of memory’ property,
though an idealisation of reality, is very useful for modelling purposes. We shall encounter Markov
processes more in continuous time (see Chapter 5) than in discrete time, where usage dictates that
they are called Markov chains. For an excellent and accessible recent treatment of Markov chains,
see e.g. Norris (1997). Martingales, on the other hand (see §3.3 below) model fair gambling games
– situations where there may be lots of randomness (or unpredictability), but no tendency to drift
one way or another: rather, there is a tendency towards stability, in that the chance influences
tend to cancel each other out on average.

C.3 Definition and basic properties of martingales

Excellent accounts of discrete-parameter martingales are Neveu (1975), Williams (1991) and
Williams (2001) to which we refer the reader for detailed discussions. We will summarise what we
need to use martingales for modelling in finance.

Definition C.3.1. A process X = (Xn) is called a martingale relative to ({Fn}, IP ) if

(i) X is adapted (to {Fn});
(ii) IE |Xn| < ∞ for all n;
(iii) IE[Xn|Fn−1] = Xn−1 IP − a.s. (n ≥ 1).

X is a supermartingale if in place of (iii)

IE[Xn|Fn−1] ≤ Xn−1 IP − a.s. (n ≥ 1);

X is a submartingale if in place of (iii)

IE[Xn|Fn−1] ≥ Xn−1 IP − a.s. (n ≥ 1).

Martingales have a useful interpretation in terms of dynamic games: a martingale is ‘constant
on average’, and models a fair game; a supermartingale is ‘decreasing on average’, and models an
unfavourable game; a submartingale is ‘increasing on average’, and models a favourable game.
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Note.

1. Martingales have many connections with harmonic functions in probabilistic potential theory.
The terminology in the inequalities above comes from this: supermartingales correspond to su-
perharmonic functions, submartingales to subharmonic functions.
2. X is a submartingale (supermartingale) if and only if −X is a supermartingale (submartingale);
X is a martingale if and only if it is both a submartingale and a supermartingale.
3. (Xn) is a martingale if and only if (Xn − X0) is a martingale. So we may without loss of
generality take X0 = 0 when convenient.
4. If X is a martingale, then for m < n using the iterated conditional expectation and the
martingale property repeatedly (all equalities are in the a.s.-sense)

IE[Xn|Fm] = IE[IE(Xn|Fn−1)|Fm] = IE[Xn−1|Fm]

= . . . = IE[Xm|Fm] = Xm,

and similarly for submartingales, supermartingales.

From the Oxford English Dictionary: martingale (etymology unknown)

1. 1589. An article of harness, to control a horse’s head.
2. Naut. A rope for guying down the jib-boom to the dolphin-striker.
3. A system of gambling which consists in doubling the stake when losing in order to recoup
oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a martingale if you do.’

Gambling games have been studied since time immemorial – indeed, the Pascal-Fermat cor-
respondence of 1654 which started the subject was on a problem (de Méré’s problem) related to
gambling. The doubling strategy above has been known at least since 1815.

The term ‘martingale’ in our sense is due to J. Ville (1939). Martingales were studied by Paul
Lévy (1886–1971) from 1934 on (see obituary (Loêve 1973)) and by J.L. Doob (1910–) from 1940
on. The first systematic exposition was (Doob 1953). This classic book, though hard going, is
still a valuable source of information.

Examples.

1. Mean zero random walk: Sn =
∑

Xi, with Xi independent with IE(Xi) = 0 is a martingale
(submartingales: positive mean; supermartingale: negative mean).
2. Stock prices: Sn = S0ζ1 · · · ζn with ζi independent positive r.vs with existing first moment.
3. Accumulating data about a random variable (Williams (1991), pp. 96, 166–167). If ξ ∈
L1(Ω,F , IP ), Mn := IE(ξ|Fn) (so Mn represents our best estimate of ξ based on knowledge at
time n), then using iterated conditional expectations

IE[Mn|Fn−1] = IE[IE(ξ|Fn)|Fn−1] = IE[ξ|Fn−1] = Mn−1,

so (Mn) is a martingale. One has the convergence

Mn → M∞ := IE[ξ|F∞] a.s. and in L1.

C.4 Martingale Transforms

Now think of a gambling game, or series of speculative investments, in discrete time. There is no
play at time 0; there are plays at times n = 1, 2, . . ., and

∆Xn := Xn −Xn−1



APPENDIX C. STOCHASTIC PROCESSES IN DISCRETE TIME 137

represents our net winnings per unit stake at play n. Thus if Xn is a martingale, the game is ‘fair
on average’.

Call a process C = (Cn)∞n=1 predictable if Cn is Fn−1-measurable for all n ≥ 1. Think of Cn

as your stake on play n (C0 is not defined, as there is no play at time 0). Predictability says that
you have to decide how much to stake on play n based on the history before time n (i.e., up to
and including play n− 1). Your winnings on game n are Cn∆Xn = Cn(Xn −Xn−1). Your total
(net) winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We write
Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0

k=1 is empty), and call C •X the martingale transform of X by C.

Theorem C.4.1. (i) If C is a bounded non-negative predictable process and X is a supermartin-
gale, C •X is a supermartingale null at zero.
(ii) If C is bounded and predictable and X is a martingale, C •X is a martingale null at zero.

Proof. Y = C •X is integrable, since C is bounded and X integrable. Now

IE[Yn − Yn−1|Fn−1] = IE[Cn(Xn −Xn−1)|Fn−1]

= CnIE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out)

≤ 0

in case (i), as C ≥ 0 and X is a supermartingale,

= 0

in case (ii), as X is a martingale.
Interpretation. You can’t beat the system! In the martingale case, predictability of C means

we can’t foresee the future (which is realistic and fair). So we expect to gain nothing – as we should.

Note.

1. Martingale transforms were introduced and studied by Burkholder (1966). For a textbook
account, see e.g. Neveu (1975), VIII.4.
2. Martingale transforms are the discrete analogues of stochastic integrals. They dominate the
mathematical theory of finance in discrete time, just as stochastic integrals dominate the theory
in continuous time.

Lemma C.4.1 (Martingale Transform Lemma). An adapted sequence of real integrable ran-
dom variables (Xn) is a martingale iff for any bounded predictable sequence (Cn),

IE

(
n∑

k=1

Ck∆Xk

)
= 0 (n = 1, 2, . . .).

Proof. If (Xn) is a martingale, Y defined by Y0 = 0,

Yn =
n∑

k=1

Ck∆Xk (n ≥ 1)
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is the martingale transform C •X, so is a martingale. Now IE(Y1) = IE(C1IE(X1 −X0)) = 0 and
we see by induction that

IE(Yn+1) = IE(Cn+1(Xn+1 −Xn)) + IE(Yn) = 0.

Conversely, if the condition of the proposition holds, choose j, and for any Fj-measurable set
A write Cn = 0 for n 6= j + 1, Cj+1 = 1A. Then (Cn) is predictable, so the condition of the
proposition, IE(

∑n
k=1 Ck∆Xk) = 0, becomes

IE[1A(Xj+1 −Xj)] = 0.

Since this holds for every set A ∈ Fj , the definition of conditional expectation gives

IE(Xj+1|Fj) = Xj .

Since this holds for every j, (Xn) is a martingale.

Remark C.4.1. The proof above is a good example of the value of Kolmogorov’s definition of
conditional expectation – which reveals itself, not in immediate transparency, but in its ease of
handling in proofs. We shall see in Chapter 4 the financial significance of martingale transforms
H •M.
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